Search (2 results, page 1 of 1)

  • × theme_ss:"Metadaten"
  • × theme_ss:"Suchmaschinen"
  • × year_i:[2010 TO 2020}
  1. What is Schema.org? (2011) 0.00
    0.0026467475 = product of:
      0.007940242 = sum of:
        0.007940242 = product of:
          0.015880484 = sum of:
            0.015880484 = weight(_text_:of in 4437) [ClassicSimilarity], result of:
              0.015880484 = score(doc=4437,freq=10.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.23179851 = fieldWeight in 4437, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4437)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This site provides a collection of schemas, i.e., html tags, that webmasters can use to markup their pages in ways recognized by major search providers. Search engines including Bing, Google and Yahoo! rely on this markup to improve the display of search results, making it easier for people to find the right web pages. Many sites are generated from structured data, which is often stored in databases. When this data is formatted into HTML, it becomes very difficult to recover the original structured data. Many applications, especially search engines, can benefit greatly from direct access to this structured data. On-page markup enables search engines to understand the information on web pages and provide richer search results in order to make it easier for users to find relevant information on the web. Markup can also enable new tools and applications that make use of the structure. A shared markup vocabulary makes easier for webmasters to decide on a markup schema and get the maximum benefit for their efforts. So, in the spirit of sitemaps.org, Bing, Google and Yahoo! have come together to provide a shared collection of schemas that webmasters can use.
  2. Roux, M.: Metadata for search engines : what can be learned from e-Sciences? (2012) 0.00
    0.0026467475 = product of:
      0.007940242 = sum of:
        0.007940242 = product of:
          0.015880484 = sum of:
            0.015880484 = weight(_text_:of in 96) [ClassicSimilarity], result of:
              0.015880484 = score(doc=96,freq=10.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.23179851 = fieldWeight in 96, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=96)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    E-sciences are data-intensive sciences that make a large use of the Web to share, collect, and process data. In this context, primary scientific data is becoming a new challenging issue as data must be extensively described (1) to account for empiric conditions and results that allow interpretation and/or analyses and (2) to be understandable by computers used for data storage and information retrieval. With this respect, metadata is a focal point whatever it is considered from the point of view of the user to visualize and exploit data as well as this of the search tools to find and retrieve information. Numerous disciplines are concerned with the issues of describing complex observations and addressing pertinent knowledge. In this paper, similarities and differences in data description and exploration strategies among disciplines in e-sciences are examined.

Types