Search (29 results, page 1 of 2)

  • × theme_ss:"Metadaten"
  • × type_ss:"el"
  • × year_i:[2000 TO 2010}
  1. Understanding metadata (2004) 0.19
    0.19192213 = product of:
      0.25589618 = sum of:
        0.019420752 = weight(_text_:information in 2686) [ClassicSimilarity], result of:
          0.019420752 = score(doc=2686,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.21943474 = fieldWeight in 2686, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=2686)
        0.12518483 = weight(_text_:standards in 2686) [ClassicSimilarity], result of:
          0.12518483 = score(doc=2686,freq=4.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.5571193 = fieldWeight in 2686, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0625 = fieldNorm(doc=2686)
        0.11129059 = sum of:
          0.056645606 = weight(_text_:organization in 2686) [ClassicSimilarity], result of:
            0.056645606 = score(doc=2686,freq=2.0), product of:
              0.17974974 = queryWeight, product of:
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.050415643 = queryNorm
              0.31513596 = fieldWeight in 2686, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.0625 = fieldNorm(doc=2686)
          0.054644987 = weight(_text_:22 in 2686) [ClassicSimilarity], result of:
            0.054644987 = score(doc=2686,freq=2.0), product of:
              0.17654699 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050415643 = queryNorm
              0.30952093 = fieldWeight in 2686, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=2686)
      0.75 = coord(3/4)
    
    Abstract
    Metadata (structured information about an object or collection of objects) is increasingly important to libraries, archives, and museums. And although librarians are familiar with a number of issues that apply to creating and using metadata (e.g., authority control, controlled vocabularies, etc.), the world of metadata is nonetheless different than library cataloging, with its own set of challenges. Therefore, whether you are new to these concepts or quite experienced with classic cataloging, this short (20 pages) introductory paper on metadata can be helpful
    Date
    10. 9.2004 10:22:40
    Imprint
    Washington, DC : National Information Standards Organization
    Source
    http://www.niso.org/standards/resources/UnderstandingMetadata.pdf
  2. ¬The Dublin Core Metadata Element Set (2007) 0.16
    0.16212037 = product of:
      0.21616049 = sum of:
        0.02427594 = weight(_text_:information in 3395) [ClassicSimilarity], result of:
          0.02427594 = score(doc=3395,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.27429342 = fieldWeight in 3395, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=3395)
        0.15648104 = weight(_text_:standards in 3395) [ClassicSimilarity], result of:
          0.15648104 = score(doc=3395,freq=4.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.69639915 = fieldWeight in 3395, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.078125 = fieldNorm(doc=3395)
        0.035403505 = product of:
          0.07080701 = sum of:
            0.07080701 = weight(_text_:organization in 3395) [ClassicSimilarity], result of:
              0.07080701 = score(doc=3395,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.39391994 = fieldWeight in 3395, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3395)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Defines fifteen metadata elements for resource description in a cross-disciplinary information environment
    Editor
    National Information Standards Organization
    Source
    http://www.niso.org/standards/resources/Z39-85-2007.pdf
  3. Metadata practices on the cutting edge (2004) 0.09
    0.08568945 = product of:
      0.1142526 = sum of:
        0.012015978 = weight(_text_:information in 2335) [ClassicSimilarity], result of:
          0.012015978 = score(doc=2335,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.13576832 = fieldWeight in 2335, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2335)
        0.077454165 = weight(_text_:standards in 2335) [ClassicSimilarity], result of:
          0.077454165 = score(doc=2335,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.34469998 = fieldWeight in 2335, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2335)
        0.024782453 = product of:
          0.049564905 = sum of:
            0.049564905 = weight(_text_:organization in 2335) [ClassicSimilarity], result of:
              0.049564905 = score(doc=2335,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.27574396 = fieldWeight in 2335, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2335)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Imprint
    Washington, DC : National Information Standards Organization
  4. Baca, M.; O'Keefe, E.: Sharing standards and expertise in the early 21st century : Moving toward a collaborative, "cross-community" model for metadata creation (2008) 0.07
    0.07153899 = product of:
      0.14307798 = sum of:
        0.01029941 = weight(_text_:information in 2321) [ClassicSimilarity], result of:
          0.01029941 = score(doc=2321,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 2321, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2321)
        0.13277857 = weight(_text_:standards in 2321) [ClassicSimilarity], result of:
          0.13277857 = score(doc=2321,freq=8.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.59091425 = fieldWeight in 2321, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.046875 = fieldNorm(doc=2321)
      0.5 = coord(2/4)
    
    Abstract
    This paper provides a brief overview of the evolving descriptive metadata landscape, one phenomenon of which can be characterized as "cross-community" metadata as manifested in records that are the result of a combination of carefully considered data value and data content standards. he online catalog of the Morgan Library & Museum provides a real-life illustration of how diverse data content standards and vocabulary tools can be integrated within the classic data structure/technical interchange format of MARC21 to better describe unique, museum-type objects, and to provide better end-user access and understanding. The Morgan experience also shows the value of developing a collaborative model for metadata creation that combines the subject expertise of curators and scholars with the cataloging expertise and knowledge of standards possessed by librarians.
    Content
    Beitrag während: World library and information congress: 74th IFLA general conference and council, 10-14 August 2008, Québec, Canada.
  5. Heery, R.; Wagner, H.: ¬A metadata registry for the Semantic Web (2002) 0.07
    0.06597382 = product of:
      0.087965086 = sum of:
        0.00849658 = weight(_text_:information in 1210) [ClassicSimilarity], result of:
          0.00849658 = score(doc=1210,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.0960027 = fieldWeight in 1210, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1210)
        0.06707728 = weight(_text_:standards in 1210) [ClassicSimilarity], result of:
          0.06707728 = score(doc=1210,freq=6.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.29851896 = fieldWeight in 1210, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1210)
        0.012391226 = product of:
          0.024782453 = sum of:
            0.024782453 = weight(_text_:organization in 1210) [ClassicSimilarity], result of:
              0.024782453 = score(doc=1210,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.13787198 = fieldWeight in 1210, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1210)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    * Agencies maintaining directories of data elements in a domain area in accordance with ISO/IEC 11179 (This standard specifies good practice for data element definition as well as the registration process. Example implementations are the National Health Information Knowledgebase hosted by the Australian Institute of Health and Welfare and the Environmental Data Registry hosted by the US Environmental Protection Agency.); * The xml.org directory of the Extended Markup Language (XML) document specifications facilitating re-use of Document Type Definition (DTD), hosted by the Organization for the Advancement of Structured Information Standards (OASIS); * The MetaForm database of Dublin Core usage and mappings maintained at the State and University Library in Goettingen; * The Semantic Web Agreement Group Dictionary, a database of terms for the Semantic Web that can be referred to by humans and software agents; * LEXML, a multi-lingual and multi-jurisdictional RDF Dictionary for the legal world; * The SCHEMAS registry maintained by the European Commission funded SCHEMAS project, which indexes several metadata element sets as well as a large number of activity reports describing metadata related activities and initiatives. Metadata registries essentially provide an index of terms. Given the distributed nature of the Web, there are a number of ways this can be accomplished. For example, the registry could link to terms and definitions in schemas published by implementers and stored locally by the schema maintainer. Alternatively, the registry might harvest various metadata schemas from their maintainers. Registries provide 'added value' to users by indexing schemas relevant to a particular 'domain' or 'community of use' and by simplifying the navigation of terms by enabling multiple schemas to be accessed from one view. An important benefit of this approach is an increase in the reuse of existing terms, rather than users having to reinvent them. Merging schemas to one view leads to harmonization between applications and helps avoid duplication of effort. Additionally, the establishment of registries to index terms actively being used in local implementations facilitates the metadata standards activity by providing implementation experience transferable to the standards-making process.
  6. Hunter, J.: MetaNet - a metadata term thesaurus to enable semantic interoperability between metadata domains (2001) 0.06
    0.06387309 = product of:
      0.08516412 = sum of:
        0.01213797 = weight(_text_:information in 6471) [ClassicSimilarity], result of:
          0.01213797 = score(doc=6471,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.13714671 = fieldWeight in 6471, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6471)
        0.0553244 = weight(_text_:standards in 6471) [ClassicSimilarity], result of:
          0.0553244 = score(doc=6471,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.24621427 = fieldWeight in 6471, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6471)
        0.017701752 = product of:
          0.035403505 = sum of:
            0.035403505 = weight(_text_:organization in 6471) [ClassicSimilarity], result of:
              0.035403505 = score(doc=6471,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.19695997 = fieldWeight in 6471, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6471)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Metadata interoperability is a fundamental requirement for access to information within networked knowledge organization systems. The Harmony international digital library project [1] has developed a common underlying data model (the ABC model) to enable the scalable mapping of metadata descriptions across domains and media types. The ABC model [2] provides a set of basic building blocks for metadata modeling and recognizes the importance of 'events' to describe unambiguously metadata for objects with a complex history. To test and evaluate the interoperability capabilities of this model, we applied it to some real multimedia examples and analysed the results of mapping from the ABC model to various different metadata domains using XSLT [3]. This work revealed serious limitations in the ability of XSLT to support flexible dynamic semantic mapping. To overcome this, we developed MetaNet [4], a metadata term thesaurus which provides the additional semantic knowledge that is non-existent within declarative XML-encoded metadata descriptions. This paper describes MetaNet, its RDF Schema [5] representation and a hybrid mapping approach which combines the structural and syntactic mapping capabilities of XSLT with the semantic knowledge of MetaNet, to enable flexible and dynamic mapping among metadata standards.
    Source
    Journal of digital information. 1(2001) no.8, art.# 42
  7. Broughton, V.: Automatic metadata generation : Digital resource description without human intervention (2007) 0.04
    0.041733973 = product of:
      0.16693589 = sum of:
        0.16693589 = sum of:
          0.08496841 = weight(_text_:organization in 6048) [ClassicSimilarity], result of:
            0.08496841 = score(doc=6048,freq=2.0), product of:
              0.17974974 = queryWeight, product of:
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.050415643 = queryNorm
              0.47270393 = fieldWeight in 6048, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.09375 = fieldNorm(doc=6048)
          0.08196748 = weight(_text_:22 in 6048) [ClassicSimilarity], result of:
            0.08196748 = score(doc=6048,freq=2.0), product of:
              0.17654699 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050415643 = queryNorm
              0.46428138 = fieldWeight in 6048, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.09375 = fieldNorm(doc=6048)
      0.25 = coord(1/4)
    
    Content
    Beitrag anläßlich des Seminars "Tools for knowledge organization - ISKO UK Seminar", 4. September 2007.
    Date
    22. 9.2007 15:41:14
  8. Baker, T.; Dekkers, M.: Identifying metadata elements with URIs : The CORES resolution (2003) 0.03
    0.034729347 = product of:
      0.06945869 = sum of:
        0.006866273 = weight(_text_:information in 1199) [ClassicSimilarity], result of:
          0.006866273 = score(doc=1199,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.0775819 = fieldWeight in 1199, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=1199)
        0.06259242 = weight(_text_:standards in 1199) [ClassicSimilarity], result of:
          0.06259242 = score(doc=1199,freq=4.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.27855965 = fieldWeight in 1199, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.03125 = fieldNorm(doc=1199)
      0.5 = coord(2/4)
    
    Abstract
    On 18 November 2002, at a meeting organised by the CORES Project (Information Society Technologies Programme, European Union), several organisations regarded as maintenance authorities for metadata elements achieved consensus on a resolution to assign Uniform Resource Identifiers (URIs) to metadata elements as a useful first step towards the development of mapping infrastructures and interoperability services. The signatories of the CORES Resolution agreed to promote this consensus in their communities and beyond and to implement an action plan in the following six months. Six months having passed, the maintainers of GILS, ONIX, MARC 21, CERIF, DOI, IEEE/LOM, and Dublin Core report on their implementations of the resolution and highlight issues of relevance to establishing good-practice conventions for declaring, identifying, and maintaining metadata elements more generally. In June 2003, the resolution was also endorsed by the maintainers of UNIMARC. The "Resolution on Metadata Element Identifiers", or CORES Resolution, is an agreement among the maintenance organisations for several major metadata standards - GILS, ONIX, MARC 21, UNIMARC, CERIF, DOI®, IEEE/LOM, and Dublin Core - to identify their metadata elements using Uniform Resource Identifiers (URIs). The Uniform Resource Identifier, defined in the IETF RFC 2396 as "a compact string of characters for identifying an abstract or physical resource", has been promoted for use as a universal form of identification by the World Wide Web Consortium. The CORES Resolution, formulated at a meeting organised by the European project CORES in November 2002, included a commitment to publicise the consensus statement to a wider audience of metadata standards initiatives and to implement key points of the agreement within the following six months - specifically, to define URI assignment mechanisms, assign URIs to elements, and formulate policies for the persistence of those URIs. This article marks the passage of six months by reporting on progress made in implementing this common action plan. After presenting the text of the CORES Resolution and its three "clarifications", the article summarises the position of each signatory organisation towards assigning URIs to its metadata elements, noting any practical or strategic problems that may have emerged. These progress reports were based on input from Thomas Baker, José Borbinha, Eliot Christian, Erik Duval, Keith Jeffery, Rebecca Guenther, and Norman Paskin. The article closes with a few general observations about these first steps towards the clarification of shared conventions for the identification of metadata elements and perhaps, one can hope, towards the ultimate goal of improving interoperability among a diversity of metadata communities.
  9. Lightle, K.S.; Ridgway, J.S.: Generation of XML records across multiple metadata standards (2003) 0.03
    0.03129621 = product of:
      0.12518483 = sum of:
        0.12518483 = weight(_text_:standards in 2189) [ClassicSimilarity], result of:
          0.12518483 = score(doc=2189,freq=4.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.5571193 = fieldWeight in 2189, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0625 = fieldNorm(doc=2189)
      0.25 = coord(1/4)
    
    Abstract
    This paper describes the process that Eisenhower National Clearinghouse (ENC) staff went through to develop crosswalks between metadata based on three different standards and the generation of the corresponding XML records. ENC needed to generate different flavors of XML records so that metadata would be displayed correctly in catalog records generated through different digital library interfaces. The crosswalk between USMARC, IEEE LOM, and DC-ED is included, as well as examples of the XML records.
  10. Lagoze, C.: Keeping Dublin Core simple : Cross-domain discovery or resource description? (2001) 0.03
    0.030393302 = product of:
      0.060786605 = sum of:
        0.012874261 = weight(_text_:information in 1216) [ClassicSimilarity], result of:
          0.012874261 = score(doc=1216,freq=18.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.14546604 = fieldWeight in 1216, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.01953125 = fieldNorm(doc=1216)
        0.047912344 = weight(_text_:standards in 1216) [ClassicSimilarity], result of:
          0.047912344 = score(doc=1216,freq=6.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.21322784 = fieldWeight in 1216, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.01953125 = fieldNorm(doc=1216)
      0.5 = coord(2/4)
    
    Abstract
    Reality is messy. Individuals perceive or define objects differently. Objects may change over time, morphing into new versions of their former selves or into things altogether different. A book can give rise to a translation, derivation, or edition, and these resulting objects are related in complex ways to each other and to the people and contexts in which they were created or transformed. Providing a normalized view of such a messy reality is a precondition for managing information. From the first library catalogs, through Melvil Dewey's Decimal Classification system in the nineteenth century, to today's MARC encoding of AACR2 cataloging rules, libraries have epitomized the process of what David Levy calls "order making", whereby catalogers impose a veneer of regularity on the natural disorder of the artifacts they encounter. The pre-digital library within which the Catalog and its standards evolved was relatively self-contained and controlled. Creating and maintaining catalog records was, and still is, the task of professionals. Today's Web, in contrast, has brought together a diversity of information management communities, with a variety of order-making standards, into what Stuart Weibel has called the Internet Commons. The sheer scale of this context has motivated a search for new ways to describe and index information. Second-generation search engines such as Google can yield astonishingly good search results, while tools such as ResearchIndex for automatic citation indexing and techniques for inferring "Web communities" from constellations of hyperlinks promise even better methods for focusing queries on information from authoritative sources. Such "automated digital libraries," according to Bill Arms, promise to radically reduce the cost of managing information. Alongside the development of such automated methods, there is increasing interest in metadata as a means of imposing pre-defined order on Web content. While the size and changeability of the Web makes professional cataloging impractical, a minimal amount of information ordering, such as that represented by the Dublin Core (DC), may vastly improve the quality of an automatic index at low cost; indeed, recent work suggests that some types of simple description may be generated with little or no human intervention.
    Metadata is not monolithic. Instead, it is helpful to think of metadata as multiple views that can be projected from a single information object. Such views can form the basis of customized information services, such as search engines. Multiple views -- different types of metadata associated with a Web resource -- can facilitate a "drill-down" search paradigm, whereby people start their searches at a high level and later narrow their focus using domain-specific search categories. In Figure 1, for example, Mona Lisa may be viewed from the perspective of non-specialized searchers, with categories that are valid across domains (who painted it and when?); in the context of a museum (when and how was it acquired?); in the geo-spatial context of a walking tour using mobile devices (where is it in the gallery?); and in a legal framework (who owns the rights to its reproduction?). Multiple descriptive views imply a modular approach to metadata. Modularity is the basis of metadata architectures such as the Resource Description Framework (RDF), which permit different communities of expertise to associate and maintain multiple metadata packages for Web resources. As noted elsewhere, static association of multiple metadata packages with resources is but one way of achieving modularity. Another method is to computationally derive order-making views customized to the current needs of a client. This paper examines the evolution and scope of the Dublin Core from this perspective of metadata modularization. Dublin Core began in 1995 with a specific goal and scope -- as an easy-to-create and maintain descriptive format to facilitate cross-domain resource discovery on the Web. Over the years, this goal of "simple metadata for coarse-granularity discovery" came to mix with another goal -- that of community and domain-specific resource description and its attendant complexity. A notion of "qualified Dublin Core" evolved whereby the model for simple resource discovery -- a set of simple metadata elements in a flat, document-centric model -- would form the basis of more complex descriptions by treating the values of its elements as entities with properties ("component elements") in their own right.
    At the time of writing, the Dublin Core Metadata Initiative (DCMI) has clarified its commitment to the simple approach. The qualification principles announced in early 2000 support the use of DC elements as the basis for simple statements about resources, rather than as the foundation for more descriptive clauses. This paper takes a critical look at some of the issues that led up to this renewed commitment to simplicity. We argue that: * There remains a compelling need for simple, "pidgin" metadata. From a technical and economic perspective, document-centric metadata, where simple string values are associated with a finite set of properties, is most appropriate for generic, cross-domain discovery queries in the Internet Commons. Such metadata is not necessarily fixed in physical records, but may be projected algorithmically from more complex metadata or from content itself. * The Dublin Core, while far from perfect from an engineering perspective, is an acceptable standard for such simple metadata. Agreements in the global information space are as much social as technical, and the process by which the Dublin Core has been developed, involving a broad cross-section of international participants, is a model for such "socially developed" standards. * Efforts to introduce complexity into Dublin Core are misguided. Complex descriptions may be necessary for some Web resources and for some purposes, such as administration, preservation, and reference linking. However, complex descriptions require more expressive data models that differentiate between agents, documents, contexts, events, and the like. An attempt to intermix simplicity and complexity, and the data models most appropriate for them, defeats the equally noble goals of cross-domain description and extensive resource description. * The principle of modularity suggests that metadata formats tailored for simplicity be used alongside others tailored for complexity.
  11. Duval, E.; Hodgins, W.; Sutton, S.; Weibel, S.L.: Metadata principles and practicalities (2002) 0.03
    0.028076127 = product of:
      0.056152254 = sum of:
        0.011892734 = weight(_text_:information in 1208) [ClassicSimilarity], result of:
          0.011892734 = score(doc=1208,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.1343758 = fieldWeight in 1208, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=1208)
        0.044259522 = weight(_text_:standards in 1208) [ClassicSimilarity], result of:
          0.044259522 = score(doc=1208,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.19697142 = fieldWeight in 1208, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.03125 = fieldNorm(doc=1208)
      0.5 = coord(2/4)
    
    Abstract
    For those of us still struggling with basic concepts regarding metadata in this brave new world in which cataloging means much more than MARC, an article like this is welcome indeed. In this 30.000-foot overview of the metadata landscape, broad issues such as modularity, namespaces, extensibility, refinement, and multilingualism are discussed. In addition, "practicalities" like application profiles, syntax and semantics, metadata registries, and automated generation of metadata are explained. Although this piece is not exhaustive of high-level metadata issues, it is nonetheless a useful description of some of the most important issues surrounding metadata creation and use. The rapid changes in the means of information access occasioned by the emergence of the World Wide Web have spawned an upheaval in the means of describing and managing information resources. Metadata is a primary tool in this work, and an important link in the value chain of knowledge economies. Yet there is much confusion about how metadata should be integrated into information systems. How is it to be created or extended? Who will manage it? How can it be used and exchanged? Whence comes its authority? Can different metadata standards be used together in a given environment? These and related questions motivate this paper. The authors hope to make explicit the strong foundations of agreement shared by two prominent metadata Initiatives: the Dublin Core Metadata Initiative (DCMI) and the Institute for Electrical and Electronics Engineers (IEEE) Learning Object Metadata (LOM) Working Group. This agreement emerged from a joint metadata taskforce meeting in Ottawa in August, 2001. By elucidating shared principles and practicalities of metadata, we hope to raise the level of understanding among our respective (and shared) constituents, so that all stakeholders can move forward more decisively to address their respective problems. The ideas in this paper are divided into two categories. Principles are those concepts judged to be common to all domains of metadata and which might inform the design of any metadata schema or application. Practicalities are the rules of thumb, constraints, and infrastructure issues that emerge from bringing theory into practice in the form of useful and sustainable systems.
  12. Frodl, C.; Gros, A.; Rühle, S.: Übersetzung des Singapore Framework für Dublin-Core-Anwendungsprofile (2009) 0.03
    0.027384182 = product of:
      0.10953673 = sum of:
        0.10953673 = weight(_text_:standards in 3229) [ClassicSimilarity], result of:
          0.10953673 = score(doc=3229,freq=4.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.4874794 = fieldWeight in 3229, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3229)
      0.25 = coord(1/4)
    
    Abstract
    Das Singapore Framework für Dublin-Core-Anwendungsprofile nennt die Rahmenbedingungen um Metadatenanwendungen möglichst interoperabel zu gestalten und so zu dokumentieren, dass sie nachnutzbar sind. Es definiert die Komponenten, die erforderlich und hilfreich sind, um ein Anwendungsprofil zu dokumentieren und es beschreibt, wie sich diese dokumentarischen Standards gegenüber Standard-Domain-Modellen und den Semantic-Web-Standards verhalten. Das Singapore Framework ist die Grundlage für die Beurteilung von Anwendungsprofilen in Hinblick auf Vollständigkeit der Dokumentation und auf Übereinstimmung mit den Prinzipien der Web-Architektur. Dieses Dokument bietet eine kurze Übersicht über das Singapore Framework. Weitere Dokumente, die als Anleitung für die Erstellung der erforderlichen Dokumentation dienen, sind in Planung.
  13. Greenberg, J.; Pattuelli, M.; Parsia, B.; Robertson, W.: Author-generated Dublin Core Metadata for Web Resources : A Baseline Study in an Organization (2002) 0.03
    0.026284594 = product of:
      0.05256919 = sum of:
        0.017165681 = weight(_text_:information in 1281) [ClassicSimilarity], result of:
          0.017165681 = score(doc=1281,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.19395474 = fieldWeight in 1281, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=1281)
        0.035403505 = product of:
          0.07080701 = sum of:
            0.07080701 = weight(_text_:organization in 1281) [ClassicSimilarity], result of:
              0.07080701 = score(doc=1281,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.39391994 = fieldWeight in 1281, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1281)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Source
    Journal of digital information. 2(2002) no.2,
  14. Frodl, C. (Bearb.); Fischer, T. (Bearb.); Baker, T. (Bearb.); Rühle, S. (Bearb.): Deutsche Übersetzung des Dublin-Core-Metadaten-Elemente-Sets (2007) 0.02
    0.023472156 = product of:
      0.093888626 = sum of:
        0.093888626 = weight(_text_:standards in 516) [ClassicSimilarity], result of:
          0.093888626 = score(doc=516,freq=4.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.41783947 = fieldWeight in 516, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.046875 = fieldNorm(doc=516)
      0.25 = coord(1/4)
    
    Abstract
    Dublin-Core-Metadaten-Elemente sind ein Standard zur Beschreibung unterschiedlicher Objekte. Die Kernelemente dieses Standards werden in dem "Dublin Core Metadata Element Set" beschrieben (http://www.dublincore.org/documents/dces/). Das Set setzt sich aus 15 Elementen zusammen, die gleichzeitig auch Teil der umfangreicheren "DCMI Metadata Terms" (http://www.dublincore.org/documents/dcmi-terms/) sind, wobei die "DCMI Metadata Terms" neben weiteren Elementen auch ein kontrolliertes Vokabular für Objekttypen enthalten. Die Übersetzung entstand zwischen April und Juli 2007 in der KIM-Arbeitsgruppe Übersetzung DCMES (http://www.kim-forum.org/kim-ag/index.htm). Anfang Juli 2007 wurde der Entwurf der Übersetzung in einem Blog veröffentlicht und die Öffentlichkeit aufgefordert, diesen Entwurf zu kommentieren. Anfang August wurden dann die in dem Blog gesammelten Kommentare in der KIM-Arbeitsgruppe Übersetzung DCMES diskutiert und so weit möglich in den Übersetzungsentwurf eingearbeitet.
    Content
    Das vorliegende Dokument ist eine Übersetzung des "Dublin Core Metadata Element Set, Version 1.1". Grundlage der Übersetzung ist: NISO Standard Z39.85-2007 (May 2007): http://www.niso.org/standards/resources/Z39-85-2007.pdf.
  15. Blanchi, C.; Petrone, J.: Distributed interoperable metadata registry (2001) 0.02
    0.019363541 = product of:
      0.077454165 = sum of:
        0.077454165 = weight(_text_:standards in 1228) [ClassicSimilarity], result of:
          0.077454165 = score(doc=1228,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.34469998 = fieldWeight in 1228, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1228)
      0.25 = coord(1/4)
    
    Abstract
    Interoperability between digital libraries depends on effective sharing of metadata. Successful sharing of metadata requires common standards for metadata exchange. Previous efforts have focused on either defining a single metadata standard, such as Dublin Core, or building digital library middleware, such as Z39.50 or Stanford's Digital Library Interoperability Protocol. In this article, we propose a distributed architecture for managing metadata and metadata schema. Instead of normalizing all metadata and schema to a single format, we have focused on building a middleware framework that tolerates heterogeneity. By providing facilities for typing and dynamic conversion of metadata, our system permits continual introduction of new forms of metadata with minimal impact on compatibility.
  16. Weibel, S.L.: Border crossings : reflections on a decade of metadata consensus building (2005) 0.01
    0.0138311 = product of:
      0.0553244 = sum of:
        0.0553244 = weight(_text_:standards in 1187) [ClassicSimilarity], result of:
          0.0553244 = score(doc=1187,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.24621427 = fieldWeight in 1187, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1187)
      0.25 = coord(1/4)
    
    Abstract
    In June of this year, I performed my final official duties as part of the Dublin Core Metadata Initiative management team. It is a happy irony to affix a seal on that service in this journal, as both D-Lib Magazine and the Dublin Core celebrate their tenth anniversaries. This essay is a personal reflection on some of the achievements and lessons of that decade. The OCLC-NCSA Metadata Workshop took place in March of 1995, and as we tried to understand what it meant and who would care, D-Lib magazine came into being and offered a natural venue for sharing our work. I recall a certain skepticism when Bill Arms said "We want D-Lib to be the first place people look for the latest developments in digital library research." These were the early days in the evolution of electronic publishing, and the goal was ambitious. By any measure, a decade of high-quality electronic publishing is an auspicious accomplishment, and D-Lib (and its host, CNRI) deserve congratulations for having achieved their goal. I am grateful to have been a contributor. That first DC workshop led to further workshops, a community, a variety of standards in several countries, an ISO standard, a conference series, and an international consortium. Looking back on this evolution is both satisfying and wistful. While I am pleased that the achievements are substantial, the unmet challenges also provide a rich till in which to cultivate insights on the development of digital infrastructure.
  17. Weibel, S.L.; Koch, T.: ¬The Dublin Core Metatdata Initiative : mission, current activities, and future directions (2000) 0.01
    0.0138311 = product of:
      0.0553244 = sum of:
        0.0553244 = weight(_text_:standards in 1237) [ClassicSimilarity], result of:
          0.0553244 = score(doc=1237,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.24621427 = fieldWeight in 1237, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1237)
      0.25 = coord(1/4)
    
    Abstract
    Metadata is a keystone component for a broad spectrum of applications that are emerging on the Web to help stitch together content and services and make them more visible to users. The Dublin Core Metadata Initiative (DCMI) has led the development of structured metadata to support resource discovery. This international community has, over a period of 6 years and 8 workshops, brought forth: * A core standard that enhances cross-disciplinary discovery and has been translated into 25 languages to date; * A conceptual framework that supports the modular development of auxiliary metadata components; * An open consensus building process that has brought to fruition Australian, European and North American standards with promise as a global standard for resource discovery; * An open community of hundreds of practitioners and theorists who have found a common ground of principles, procedures, core semantics, and a framework to support interoperable metadata. The 8th Dublin Core Metadata Workshop capped an active year of progress that included standardization of the 15-element core foundation and approval of an initial array of Dublin Core Qualifiers. While there is important work to be done to promote stability and increased adoption of the Dublin Core, the time has come to look beyond the core elements towards a broader metadata agenda. This report describes the new mission statement of the Dublin Core Metadata Initiative (DCMI) that supports the agenda, recapitulates the important milestones of the year 2000, outlines activities of the 8th DCMI workshop in Ottawa, and summarizes the 2001 workplan.
  18. Baker, T.: ¬A grammar of Dublin Core (2000) 0.01
    0.011685811 = product of:
      0.023371622 = sum of:
        0.009710376 = weight(_text_:information in 1236) [ClassicSimilarity], result of:
          0.009710376 = score(doc=1236,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.10971737 = fieldWeight in 1236, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=1236)
        0.013661247 = product of:
          0.027322493 = sum of:
            0.027322493 = weight(_text_:22 in 1236) [ClassicSimilarity], result of:
              0.027322493 = score(doc=1236,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.15476047 = fieldWeight in 1236, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1236)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Dublin Core is often presented as a modern form of catalog card -- a set of elements (and now qualifiers) that describe resources in a complete package. Sometimes it is proposed as an exchange format for sharing records among multiple collections. The founding principle that "every element is optional and repeatable" reinforces the notion that a Dublin Core description is to be taken as a whole. This paper, in contrast, is based on a much different premise: Dublin Core is a language. More precisely, it is a small language for making a particular class of statements about resources. Like natural languages, it has a vocabulary of word-like terms, the two classes of which -- elements and qualifiers -- function within statements like nouns and adjectives; and it has a syntax for arranging elements and qualifiers into statements according to a simple pattern. Whenever tourists order a meal or ask directions in an unfamiliar language, considerate native speakers will spontaneously limit themselves to basic words and simple sentence patterns along the lines of "I am so-and-so" or "This is such-and-such". Linguists call this pidginization. In such situations, a small phrase book or translated menu can be most helpful. By analogy, today's Web has been called an Internet Commons where users and information providers from a wide range of scientific, commercial, and social domains present their information in a variety of incompatible data models and description languages. In this context, Dublin Core presents itself as a metadata pidgin for digital tourists who must find their way in this linguistically diverse landscape. Its vocabulary is small enough to learn quickly, and its basic pattern is easily grasped. It is well-suited to serve as an auxiliary language for digital libraries. This grammar starts by defining terms. It then follows a 200-year-old tradition of English grammar teaching by focusing on the structure of single statements. It concludes by looking at the growing dictionary of Dublin Core vocabulary terms -- its registry, and at how statements can be used to build the metadata equivalent of paragraphs and compositions -- the application profile.
    Date
    26.12.2011 14:01:22
  19. Tonkin, E.; Baptista, A.A.; Hooland, S. van; Resmini, A.; Mendéz, E.; Neville, L.: Kinds of Tags : a collaborative research study on tag usage and structure (2007) 0.01
    0.00876192 = product of:
      0.03504768 = sum of:
        0.03504768 = product of:
          0.07009536 = sum of:
            0.07009536 = weight(_text_:organization in 531) [ClassicSimilarity], result of:
              0.07009536 = score(doc=531,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.38996086 = fieldWeight in 531, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=531)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Content
    Präsentation während der Veranstaltung "Networked Knowledge Organization Systems and Services: The 6th European Networked Knowledge Organization Systems (NKOS) Workshop, Workshop at the 11th ECDL Conference, Budapest, Hungary, September 21st 2007".
  20. METS: an overview & tutorial : Metadata Encoding & Transmission Standard (METS) (2001) 0.01
    0.0053105257 = product of:
      0.021242103 = sum of:
        0.021242103 = product of:
          0.042484205 = sum of:
            0.042484205 = weight(_text_:organization in 1323) [ClassicSimilarity], result of:
              0.042484205 = score(doc=1323,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.23635197 = fieldWeight in 1323, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1323)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Maintaining a library of digital objects of necessaryy requires maintaining metadata about those objects. The metadata necessary for successful management and use of digital objeets is both more extensive than and different from the metadata used for managing collections of printed works and other physical materials. While a library may record descriptive metadata regarding a book in its collection, the book will not dissolve into a series of unconnected pages if the library fails to record structural metadata regarding the book's organization, nor will scholars be unable to evaluate the book's worth if the library fails to note that the book was produced using a Ryobi offset press. The Same cannot be said for a digital version of the saure book. Without structural metadata, the page image or text files comprising the digital work are of little use, and without technical metadata regarding the digitization process, scholars may be unsure of how accurate a reflection of the original the digital version provides. For internal management purposes, a library must have access to appropriate technical metadata in order to periodically refresh and migrate the data, ensuring the durability of valuable resources.