Search (5 results, page 1 of 1)

  • × theme_ss:"Metadaten"
  • × type_ss:"el"
  • × year_i:[2010 TO 2020}
  1. Roy, W.; Gray, C.: Preparing existing metadata for repository batch import : a recipe for a fickle food (2018) 0.00
    0.0017527144 = product of:
      0.0122690005 = sum of:
        0.0122690005 = product of:
          0.024538001 = sum of:
            0.024538001 = weight(_text_:22 in 4550) [ClassicSimilarity], result of:
              0.024538001 = score(doc=4550,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.19345059 = fieldWeight in 4550, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4550)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    10.11.2018 16:27:22
  2. Hardesty, J.L.; Young, J.B.: ¬The semantics of metadata : Avalon Media System and the move to RDF (2017) 0.00
    9.624433E-4 = product of:
      0.0067371028 = sum of:
        0.0067371028 = product of:
          0.033685513 = sum of:
            0.033685513 = weight(_text_:system in 3896) [ClassicSimilarity], result of:
              0.033685513 = score(doc=3896,freq=4.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.29527056 = fieldWeight in 3896, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3896)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    The Avalon Media System (Avalon) provides access and management for digital audio and video collections in libraries and archives. The open source project is led by the libraries of Indiana University Bloomington and Northwestern University and is funded in part by grants from The Andrew W. Mellon Foundation and Institute of Museum and Library Services. Avalon is based on the Samvera Community (formerly Hydra Project) software stack and uses Fedora as the digital repository back end. The Avalon project team is in the process of migrating digital repositories from Fedora 3 to Fedora 4 and incorporating metadata statements using the Resource Description Framework (RDF) instead of XML files accompanying the digital objects in the repository. The Avalon team has worked on the migration path for technical metadata and is now working on the migration paths for structural metadata (PCDM) and descriptive metadata (from MODS XML to RDF). This paper covers the decisions made to begin using RDF for software development and offers a window into how Semantic Web technology functions in the real world.
  3. Farney, T.: using Google Tag Manager to share code : Designing shareable tags (2019) 0.00
    5.6712516E-4 = product of:
      0.003969876 = sum of:
        0.003969876 = product of:
          0.01984938 = sum of:
            0.01984938 = weight(_text_:system in 5443) [ClassicSimilarity], result of:
              0.01984938 = score(doc=5443,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.17398985 = fieldWeight in 5443, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5443)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Sharing code between libraries is not a new phenomenon and neither is Google Tag Manager (GTM). GTM launched in 2012 as a JavaScript and HTML manager with the intent of easing the implementation of different analytics trackers and marketing scripts on a website. However, it can be used to load other code using its tag system onto a website. It's a simple process to export and import tags facilitating the code sharing process without requiring a high degree of coding experience. The entire process involves creating the script tag in GTM, exporting the GTM content into a sharable export file for someone else to import into their library's GTM container, and finally publishing that imported file to push the code to the website it was designed for. This case study provides an example of designing and sharing a GTM container loaded with advanced Google Analytics configurations such as event tracking and custom dimensions for other libraries using the Summon discovery service. It also discusses processes for designing GTM tags for export, best practices on importing and testing GTM content created by other libraries and concludes with evaluating the pros and cons of encouraging GTM use.
  4. Hodges, D.W.; Schlottmann, K.: better archival migration outcomes with Python and the Google Sheets API : Reporting from the archives (2019) 0.00
    5.6712516E-4 = product of:
      0.003969876 = sum of:
        0.003969876 = product of:
          0.01984938 = sum of:
            0.01984938 = weight(_text_:system in 5444) [ClassicSimilarity], result of:
              0.01984938 = score(doc=5444,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.17398985 = fieldWeight in 5444, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5444)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Columbia University Libraries recently embarked on a multi-phase project to migrate nearly 4,000 records describing over 70,000 linear feet of archival material from disparate sources and formats into ArchivesSpace. This paper discusses tools and methods brought to bear in Phase 2 of this project, which required us to look closely at how to integrate a large number of legacy finding aids into the new system and merge descriptive data that had diverged in myriad ways. Using Python, XSLT, and a widely available if underappreciated resource-the Google Sheets API-archival and technical library staff devised ways to efficiently report data from different sources, and present it in an accessible, user-friendly way,. Responses were then fed back into automated data remediation processes to keep the migration project on track and minimize manual intervention. The scripts and processes developed proved very effective, and moreover, show promise well beyond the ArchivesSpace migration. This paper describes the Python/XSLT/Sheets API processes developed and how they opened a path to move beyond CSV-based reporting with flexible, ad-hoc data interfaces easily adaptable to meet a variety of purposes.
  5. Dunsire, G.; Willer, M.: Initiatives to make standard library metadata models and structures available to the Semantic Web (2010) 0.00
    4.5370017E-4 = product of:
      0.003175901 = sum of:
        0.003175901 = product of:
          0.015879504 = sum of:
            0.015879504 = weight(_text_:system in 3965) [ClassicSimilarity], result of:
              0.015879504 = score(doc=3965,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.13919188 = fieldWeight in 3965, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3965)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    This paper describes recent initiatives to make standard library metadata models and structures available to the Semantic Web, including IFLA standards such as Functional Requirements for Bibliographic Records (FRBR), Functional Requirements for Authority Data (FRAD), and International Standard Bibliographic Description (ISBD) along with the infrastructure that supports them. The FRBR Review Group is currently developing representations of FRAD and the entityrelationship model of FRBR in resource description framework (RDF) applications, using a combination of RDF, RDF Schema (RDFS), Simple Knowledge Organisation System (SKOS) and Web Ontology Language (OWL), cross-relating both models where appropriate. The ISBD/XML Task Group is investigating the representation of ISBD in RDF. The IFLA Namespaces project is developing an administrative and technical infrastructure to support such initiatives and encourage uptake of standards by other agencies. The paper describes similar initiatives with related external standards such as RDA - resource description and access, REICAT (the new Italian cataloguing rules) and CIDOC Conceptual Reference Model (CRM). The DCMI RDA Task Group is working with the Joint Steering Committee for RDA to develop Semantic Web representations of RDA structural elements, which are aligned with FRBR and FRAD, and controlled metadata content vocabularies. REICAT is also based on FRBR, and an object-oriented version of FRBR has been integrated with CRM, which itself has an RDF representation. CRM was initially based on the metadata needs of the museum community, and is now seeking extension to the archives community with the eventual aim of developing a model common to the main cultural information domains of archives, libraries and museums. The Vocabulary Mapping Framework (VMF) project has developed a Semantic Web tool to automatically generate mappings between metadata models from the information communities, including publishers. The tool is based on several standards, including CRM, FRAD, FRBR, MARC21 and RDA.