Search (30 results, page 2 of 2)

  • × theme_ss:"Metadaten"
  • × type_ss:"el"
  1. Lynch, J.D.; Gibson, J.; Han, M.-J.: Analyzing and normalizing type metadata for a large aggregated digital library (2020) 0.01
    0.009052756 = product of:
      0.036211025 = sum of:
        0.036211025 = weight(_text_:data in 5720) [ClassicSimilarity], result of:
          0.036211025 = score(doc=5720,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24455236 = fieldWeight in 5720, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5720)
      0.25 = coord(1/4)
    
    Abstract
    The Illinois Digital Heritage Hub (IDHH) gathers and enhances metadata from contributing institutions around the state of Illinois and provides this metadata to th Digital Public Library of America (DPLA) for greater access. The IDHH helps contributors shape their metadata to the standards recommended and required by the DPLA in part by analyzing and enhancing aggregated metadata. In late 2018, the IDHH undertook a project to address a particularly problematic field, Type metadata. This paper walks through the project, detailing the process of gathering and analyzing metadata using the DPLA API and OpenRefine, data remediation through XSL transformations in conjunction with local improvements by contributing institutions, and the DPLA ingestion system's quality controls.
  2. Hauff-Hartig, S.: "Im Dickicht der Einzelheiten" : Herausforderungen und Lösungen für die Erschließung (2022) 0.01
    0.009052756 = product of:
      0.036211025 = sum of:
        0.036211025 = weight(_text_:data in 498) [ClassicSimilarity], result of:
          0.036211025 = score(doc=498,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24455236 = fieldWeight in 498, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=498)
      0.25 = coord(1/4)
    
    Source
    Open Password. 2022, Nr. 1026 vom 07.02.2022 [https://www.password-online.de/?mailpoet_router&endpoint=view_in_browser&action=view&data=WzQwNiwiMTY2ZjQ0NjVkNzJhIiwwLDAsMzY4LDFd]
  3. Dunsire, G.; Willer, M.: Initiatives to make standard library metadata models and structures available to the Semantic Web (2010) 0.01
    0.008959906 = product of:
      0.035839625 = sum of:
        0.035839625 = weight(_text_:data in 3965) [ClassicSimilarity], result of:
          0.035839625 = score(doc=3965,freq=6.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24204408 = fieldWeight in 3965, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03125 = fieldNorm(doc=3965)
      0.25 = coord(1/4)
    
    Abstract
    This paper describes recent initiatives to make standard library metadata models and structures available to the Semantic Web, including IFLA standards such as Functional Requirements for Bibliographic Records (FRBR), Functional Requirements for Authority Data (FRAD), and International Standard Bibliographic Description (ISBD) along with the infrastructure that supports them. The FRBR Review Group is currently developing representations of FRAD and the entityrelationship model of FRBR in resource description framework (RDF) applications, using a combination of RDF, RDF Schema (RDFS), Simple Knowledge Organisation System (SKOS) and Web Ontology Language (OWL), cross-relating both models where appropriate. The ISBD/XML Task Group is investigating the representation of ISBD in RDF. The IFLA Namespaces project is developing an administrative and technical infrastructure to support such initiatives and encourage uptake of standards by other agencies. The paper describes similar initiatives with related external standards such as RDA - resource description and access, REICAT (the new Italian cataloguing rules) and CIDOC Conceptual Reference Model (CRM). The DCMI RDA Task Group is working with the Joint Steering Committee for RDA to develop Semantic Web representations of RDA structural elements, which are aligned with FRBR and FRAD, and controlled metadata content vocabularies. REICAT is also based on FRBR, and an object-oriented version of FRBR has been integrated with CRM, which itself has an RDF representation. CRM was initially based on the metadata needs of the museum community, and is now seeking extension to the archives community with the eventual aim of developing a model common to the main cultural information domains of archives, libraries and museums. The Vocabulary Mapping Framework (VMF) project has developed a Semantic Web tool to automatically generate mappings between metadata models from the information communities, including publishers. The tool is based on several standards, including CRM, FRAD, FRBR, MARC21 and RDA.
    The paper discusses the importance of these initiatives in releasing as linked data the very large quantities of rich, professionally-generated metadata stored in formats based on these standards, such as UNIMARC and MARC21, addressing such issues as critical mass for semantic and statistical inferencing, integration with user- and machine-generated metadata, and authenticity, veracity and trust. The paper also discusses related initiatives to release controlled vocabularies, including the Dewey Decimal Classification (DDC), ISBD, Library of Congress Name Authority File (LCNAF), Library of Congress Subject Headings (LCSH), Rameau (French subject headings), Universal Decimal Classification (UDC), and the Virtual International Authority File (VIAF) as linked data. Finally, the paper discusses the potential collective impact of these initiatives on metadata workflows and management systems.
  4. METS: an overview & tutorial : Metadata Encoding & Transmission Standard (METS) (2001) 0.01
    0.0077595054 = product of:
      0.031038022 = sum of:
        0.031038022 = weight(_text_:data in 1323) [ClassicSimilarity], result of:
          0.031038022 = score(doc=1323,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2096163 = fieldWeight in 1323, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=1323)
      0.25 = coord(1/4)
    
    Abstract
    Maintaining a library of digital objects of necessaryy requires maintaining metadata about those objects. The metadata necessary for successful management and use of digital objeets is both more extensive than and different from the metadata used for managing collections of printed works and other physical materials. While a library may record descriptive metadata regarding a book in its collection, the book will not dissolve into a series of unconnected pages if the library fails to record structural metadata regarding the book's organization, nor will scholars be unable to evaluate the book's worth if the library fails to note that the book was produced using a Ryobi offset press. The Same cannot be said for a digital version of the saure book. Without structural metadata, the page image or text files comprising the digital work are of little use, and without technical metadata regarding the digitization process, scholars may be unsure of how accurate a reflection of the original the digital version provides. For internal management purposes, a library must have access to appropriate technical metadata in order to periodically refresh and migrate the data, ensuring the durability of valuable resources.
  5. Godby, C.J.; Young, J.A.; Childress, E.: ¬A repository of metadata crosswalks (2004) 0.01
    0.007418666 = product of:
      0.029674664 = sum of:
        0.029674664 = product of:
          0.05934933 = sum of:
            0.05934933 = weight(_text_:processing in 1155) [ClassicSimilarity], result of:
              0.05934933 = score(doc=1155,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.3130829 = fieldWeight in 1155, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1155)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    This paper proposes a model for metadata crosswalks that associates three pieces of information: the crosswalk, the source metadata standard, and the target metadata standard, each of which may have a machine-readable encoding and human-readable description. The crosswalks are encoded as METS records that are made available to a repository for processing by search engines, OAI harvesters, and custom-designed Web services. The METS object brings together all of the information required to access and interpret crosswalks and represents a significant improvement over previously available formats. But it raises questions about how best to describe these complex objects and exposes gaps that must eventually be filled in by the digital library community.
  6. Hunter, J.: MetaNet - a metadata term thesaurus to enable semantic interoperability between metadata domains (2001) 0.01
    0.006466255 = product of:
      0.02586502 = sum of:
        0.02586502 = weight(_text_:data in 6471) [ClassicSimilarity], result of:
          0.02586502 = score(doc=6471,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 6471, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6471)
      0.25 = coord(1/4)
    
    Abstract
    Metadata interoperability is a fundamental requirement for access to information within networked knowledge organization systems. The Harmony international digital library project [1] has developed a common underlying data model (the ABC model) to enable the scalable mapping of metadata descriptions across domains and media types. The ABC model [2] provides a set of basic building blocks for metadata modeling and recognizes the importance of 'events' to describe unambiguously metadata for objects with a complex history. To test and evaluate the interoperability capabilities of this model, we applied it to some real multimedia examples and analysed the results of mapping from the ABC model to various different metadata domains using XSLT [3]. This work revealed serious limitations in the ability of XSLT to support flexible dynamic semantic mapping. To overcome this, we developed MetaNet [4], a metadata term thesaurus which provides the additional semantic knowledge that is non-existent within declarative XML-encoded metadata descriptions. This paper describes MetaNet, its RDF Schema [5] representation and a hybrid mapping approach which combines the structural and syntactic mapping capabilities of XSLT with the semantic knowledge of MetaNet, to enable flexible and dynamic mapping among metadata standards.
  7. Bearman, D.; Miller, E.; Rust, G.; Trant, J.; Weibel, S.: ¬A common model to support interoperable metadata : progress report on reconciling metadata requirements from the Dublin Core and INDECS/DOI communities (1999) 0.01
    0.006466255 = product of:
      0.02586502 = sum of:
        0.02586502 = weight(_text_:data in 1249) [ClassicSimilarity], result of:
          0.02586502 = score(doc=1249,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 1249, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1249)
      0.25 = coord(1/4)
    
    Abstract
    The Dublin Core metadata community and the INDECS/DOI community of authors, rights holders, and publishers are seeking common ground in the expression of metadata for information resources. Recent meetings at the 6th Dublin Core Workshop in Washington DC sketched out common models for semantics (informed by the requirements articulated in the IFLA Functional Requirements for the Bibliographic Record) and conventions for knowledge representation (based on the Resource Description Framework under development by the W3C). Further development of detailed requirements is planned by both communities in the coming months with the aim of fully representing the metadata needs of each. An open "Schema Harmonization" working group has been established to identify a common framework to support interoperability among these communities. The present document represents a starting point identifying historical developments and common requirements of these perspectives on metadata and charts a path for harmonizing their respective conceptual models. It is hoped that collaboration over the coming year will result in agreed semantic and syntactic conventions that will support a high degree of interoperability among these communities, ideally expressed in a single data model and using common, standard tools.
  8. Understanding metadata (2004) 0.01
    0.006344468 = product of:
      0.025377871 = sum of:
        0.025377871 = product of:
          0.050755743 = sum of:
            0.050755743 = weight(_text_:22 in 2686) [ClassicSimilarity], result of:
              0.050755743 = score(doc=2686,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.30952093 = fieldWeight in 2686, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2686)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    10. 9.2004 10:22:40
  9. Lagoze, C.: Keeping Dublin Core simple : Cross-domain discovery or resource description? (2001) 0.00
    0.0045723324 = product of:
      0.01828933 = sum of:
        0.01828933 = weight(_text_:data in 1216) [ClassicSimilarity], result of:
          0.01828933 = score(doc=1216,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.123517595 = fieldWeight in 1216, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.01953125 = fieldNorm(doc=1216)
      0.25 = coord(1/4)
    
    Abstract
    At the time of writing, the Dublin Core Metadata Initiative (DCMI) has clarified its commitment to the simple approach. The qualification principles announced in early 2000 support the use of DC elements as the basis for simple statements about resources, rather than as the foundation for more descriptive clauses. This paper takes a critical look at some of the issues that led up to this renewed commitment to simplicity. We argue that: * There remains a compelling need for simple, "pidgin" metadata. From a technical and economic perspective, document-centric metadata, where simple string values are associated with a finite set of properties, is most appropriate for generic, cross-domain discovery queries in the Internet Commons. Such metadata is not necessarily fixed in physical records, but may be projected algorithmically from more complex metadata or from content itself. * The Dublin Core, while far from perfect from an engineering perspective, is an acceptable standard for such simple metadata. Agreements in the global information space are as much social as technical, and the process by which the Dublin Core has been developed, involving a broad cross-section of international participants, is a model for such "socially developed" standards. * Efforts to introduce complexity into Dublin Core are misguided. Complex descriptions may be necessary for some Web resources and for some purposes, such as administration, preservation, and reference linking. However, complex descriptions require more expressive data models that differentiate between agents, documents, contexts, events, and the like. An attempt to intermix simplicity and complexity, and the data models most appropriate for them, defeats the equally noble goals of cross-domain description and extensive resource description. * The principle of modularity suggests that metadata formats tailored for simplicity be used alongside others tailored for complexity.
  10. Roy, W.; Gray, C.: Preparing existing metadata for repository batch import : a recipe for a fickle food (2018) 0.00
    0.0039652926 = product of:
      0.01586117 = sum of:
        0.01586117 = product of:
          0.03172234 = sum of:
            0.03172234 = weight(_text_:22 in 4550) [ClassicSimilarity], result of:
              0.03172234 = score(doc=4550,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.19345059 = fieldWeight in 4550, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4550)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    10.11.2018 16:27:22