Search (12 results, page 1 of 1)

  • × theme_ss:"Metadaten"
  • × type_ss:"el"
  1. Broughton, V.: Automatic metadata generation : Digital resource description without human intervention (2007) 0.02
    0.021061828 = product of:
      0.042123657 = sum of:
        0.042123657 = product of:
          0.08424731 = sum of:
            0.08424731 = weight(_text_:22 in 6048) [ClassicSimilarity], result of:
              0.08424731 = score(doc=6048,freq=2.0), product of:
                0.18145745 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051817898 = queryNorm
                0.46428138 = fieldWeight in 6048, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6048)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 9.2007 15:41:14
  2. Roszkowski, M.; Lukas, C.: ¬A distributed architecture for resource discovery using metadata (1998) 0.02
    0.016777555 = product of:
      0.03355511 = sum of:
        0.03355511 = product of:
          0.06711022 = sum of:
            0.06711022 = weight(_text_:indexing in 1256) [ClassicSimilarity], result of:
              0.06711022 = score(doc=1256,freq=8.0), product of:
                0.19835205 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.051817898 = queryNorm
                0.3383389 = fieldWeight in 1256, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1256)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article describes an approach for linking geographically distributed collections of metadata so that they are searchable as a single collection. We describe the infrastructure, which uses standard Internet protocols such as the Lightweight Directory Access Protocol (LDAP) and the Common Indexing Protocol (CIP), to distribute queries, return results, and exchange index information. We discuss the advantages of using linked collections of authoritative metadata as an alternative to using a keyword indexing search-engine for resource discovery. We examine other architectures that use metadata for resource discovery, such as Dienst/NCSTRL, the AHDS HTTP/Z39.50 Gateway, and the ROADS initiative. Finally, we discuss research issues and future directions of the project. The Internet Scout Project, which is funded by the National Science Foundation and is located in the Computer Sciences Department at the University of Wisconsin-Madison, is charged with assisting the higher education community in resource discovery on the Internet. To that end, the Scout Report and subsequent subject-specific Scout Reports were developed to guide the U.S. higher education community to research-quality resources. The Scout Report Signpost utilizes the content from the Scout Reports as the basis of a metadata collection. Signpost consists of more than 2000 cataloged Internet sites using established standards such as Library of Congress subject headings and abbreviated call letters, and emerging standards such as the Dublin Core (DC). This searchable and browseable collection is free and freely accessible, as are all of the Internet Scout Project's services.
    As well developed as both the Scout Reports and Signpost are, they cannot capture the wealth of high-quality content that is available on the Internet. An obvious next step toward increasing the usefulness of our own collection and its value to our customer base is to partner with other high-quality content providers who have developed similar collections and to develop a single, virtual collection. Project Isaac (working title) is the Internet Scout Project's latest resource discovery effort. Project Isaac involves the development of a research testbed that allows experimentation with protocols and algorithms for creating, maintaining, indexing and searching distributed collections of metadata. Project Isaac's infrastructure uses standard Internet protocols, such as the Lightweight Directory Access Protocol (LDAP) and the Common Indexing Protocol (CIP) to distribute queries, return results, and exchange index or centroid information. The overall goal is to support a single-search interface to geographically distributed and independently maintained metadata collections.
  3. Golub, K.; Moon, J.; Nielsen, M.L.; Tudhope, D.: EnTag: Enhanced Tagging for Discovery (2008) 0.01
    0.01468036 = product of:
      0.02936072 = sum of:
        0.02936072 = product of:
          0.05872144 = sum of:
            0.05872144 = weight(_text_:indexing in 2294) [ClassicSimilarity], result of:
              0.05872144 = score(doc=2294,freq=2.0), product of:
                0.19835205 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.051817898 = queryNorm
                0.29604656 = fieldWeight in 2294, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2294)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose: Investigate the combination of controlled and folksonomy approaches to support resource discovery in repositories and digital collections. Aim: Investigate whether use of an established controlled vocabulary can help improve social tagging for better resource discovery. Objectives: (1) Investigate indexing aspects when using only social tagging versus when using social tagging with suggestions from a controlled vocabulary; (2) Investigate above in two different contexts: tagging by readers and tagging by authors; (3) Investigate influence of only social tagging versus social tagging with a controlled vocabulary on retrieval. - Vgl.: http://www.ukoln.ac.uk/projects/enhanced-tagging/.
  4. Understanding metadata (2004) 0.01
    0.014041219 = product of:
      0.028082438 = sum of:
        0.028082438 = product of:
          0.056164876 = sum of:
            0.056164876 = weight(_text_:22 in 2686) [ClassicSimilarity], result of:
              0.056164876 = score(doc=2686,freq=2.0), product of:
                0.18145745 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051817898 = queryNorm
                0.30952093 = fieldWeight in 2686, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2686)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    10. 9.2004 10:22:40
  5. Sewing, S.: Bestandserhaltung und Archivierung : Koordinierung auf der Basis eines gemeinsamen Metadatenformates in den deutschen und österreichischen Bibliotheksverbünden (2021) 0.01
    0.010530914 = product of:
      0.021061828 = sum of:
        0.021061828 = product of:
          0.042123657 = sum of:
            0.042123657 = weight(_text_:22 in 266) [ClassicSimilarity], result of:
              0.042123657 = score(doc=266,freq=2.0), product of:
                0.18145745 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051817898 = queryNorm
                0.23214069 = fieldWeight in 266, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=266)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 5.2021 12:43:05
  6. Husevag, A.-S.R.: Named entities in indexing : a case study of TV subtitles and metadata records (2016) 0.01
    0.010485971 = product of:
      0.020971943 = sum of:
        0.020971943 = product of:
          0.041943885 = sum of:
            0.041943885 = weight(_text_:indexing in 3105) [ClassicSimilarity], result of:
              0.041943885 = score(doc=3105,freq=2.0), product of:
                0.19835205 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.051817898 = queryNorm
                0.21146181 = fieldWeight in 3105, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3105)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  7. Baker, T.: Languages for Dublin Core (1998) 0.01
    0.010380582 = product of:
      0.020761164 = sum of:
        0.020761164 = product of:
          0.041522328 = sum of:
            0.041522328 = weight(_text_:indexing in 1257) [ClassicSimilarity], result of:
              0.041522328 = score(doc=1257,freq=4.0), product of:
                0.19835205 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.051817898 = queryNorm
                0.20933652 = fieldWeight in 1257, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1257)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Over the past three years, the Dublin Core Metadata Initiative has achieved a broad international consensus on the semantics of a simple element set for describing electronic resources. Since the first workshop in March 1995, which was reported in the very first issue of D-Lib Magazine, Dublin Core has been the topic of perhaps a dozen articles here. Originally intended to be simple and intuitive enough for authors to tag Web pages without special training, Dublin Core is being adapted now for more specialized uses, from government information and legal deposit to museum informatics and electronic commerce. To meet such specialized requirements, Dublin Core can be customized with additional elements or qualifiers. However, these refinements can compromise interoperability across applications. There are tradeoffs between using specific terms that precisely meet local needs versus general terms that are understood more widely. We can better understand this inevitable tension between simplicity and complexity if we recognize that metadata is a form of human language. With Dublin Core, as with a natural language, people are inclined to stretch definitions, make general terms more specific, specific terms more general, misunderstand intended meanings, and coin new terms. One goal of this paper, therefore, will be to examine the experience of some related ways to seek semantic interoperability through simplicity: planned languages, interlingua constructs, and pidgins. The problem of semantic interoperability is compounded when we consider Dublin Core in translation. All of the workshops, documents, mailing lists, user guides, and working group outputs of the Dublin Core Initiative have been in English. But in many countries and for many applications, people need a metadata standard in their own language. In principle, the broad elements of Dublin Core can be defined equally well in Bulgarian or Hindi. Since Dublin Core is a controlled standard, however, any parallel definitions need to be kept in sync as the standard evolves. Another goal of the paper, then, will be to define the conceptual and organizational problem of maintaining a metadata standard in multiple languages. In addition to a name and definition, which are meant for human consumption, each Dublin Core element has a label, or indexing token, meant for harvesting by search engines. For practical reasons, these machine-readable tokens are English-looking strings such as Creator and Subject (just as HTML tags are called HEAD, BODY, or TITLE). These tokens, which are shared by Dublin Cores in every language, ensure that metadata fields created in any particular language are indexed together across repositories. As symbols of underlying universal semantics, these tokens form the basis of semantic interoperability among the multiple Dublin Cores. As long as we limit ourselves to sharing these indexing tokens among exact translations of a simple set of fifteen broad elements, the definitions of which fit easily onto two pages, the problem of Dublin Core in multiple languages is straightforward. But nothing having to do with human language is ever so simple. Just as speakers of various languages must learn the language of Dublin Core in their own tongues, we must find the right words to talk about a metadata language that is expressable in many discipline-specific jargons and natural languages and that inevitably will evolve and change over time.
  8. Roy, W.; Gray, C.: Preparing existing metadata for repository batch import : a recipe for a fickle food (2018) 0.01
    0.008775762 = product of:
      0.017551525 = sum of:
        0.017551525 = product of:
          0.03510305 = sum of:
            0.03510305 = weight(_text_:22 in 4550) [ClassicSimilarity], result of:
              0.03510305 = score(doc=4550,freq=2.0), product of:
                0.18145745 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051817898 = queryNorm
                0.19345059 = fieldWeight in 4550, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4550)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    10.11.2018 16:27:22
  9. Dunsire, G.; Willer, M.: Initiatives to make standard library metadata models and structures available to the Semantic Web (2010) 0.01
    0.008388777 = product of:
      0.016777555 = sum of:
        0.016777555 = product of:
          0.03355511 = sum of:
            0.03355511 = weight(_text_:indexing in 3965) [ClassicSimilarity], result of:
              0.03355511 = score(doc=3965,freq=2.0), product of:
                0.19835205 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.051817898 = queryNorm
                0.16916946 = fieldWeight in 3965, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3965)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Vortrag im Rahmen der Session 93. Cataloguing der WORLD LIBRARY AND INFORMATION CONGRESS: 76TH IFLA GENERAL CONFERENCE AND ASSEMBLY, 10-15 August 2010, Gothenburg, Sweden - 149. Information Technology, Cataloguing, Classification and Indexing with Knowledge Management
  10. Heery, R.; Wagner, H.: ¬A metadata registry for the Semantic Web (2002) 0.01
    0.00734018 = product of:
      0.01468036 = sum of:
        0.01468036 = product of:
          0.02936072 = sum of:
            0.02936072 = weight(_text_:indexing in 1210) [ClassicSimilarity], result of:
              0.02936072 = score(doc=1210,freq=2.0), product of:
                0.19835205 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.051817898 = queryNorm
                0.14802328 = fieldWeight in 1210, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1210)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    * Agencies maintaining directories of data elements in a domain area in accordance with ISO/IEC 11179 (This standard specifies good practice for data element definition as well as the registration process. Example implementations are the National Health Information Knowledgebase hosted by the Australian Institute of Health and Welfare and the Environmental Data Registry hosted by the US Environmental Protection Agency.); * The xml.org directory of the Extended Markup Language (XML) document specifications facilitating re-use of Document Type Definition (DTD), hosted by the Organization for the Advancement of Structured Information Standards (OASIS); * The MetaForm database of Dublin Core usage and mappings maintained at the State and University Library in Goettingen; * The Semantic Web Agreement Group Dictionary, a database of terms for the Semantic Web that can be referred to by humans and software agents; * LEXML, a multi-lingual and multi-jurisdictional RDF Dictionary for the legal world; * The SCHEMAS registry maintained by the European Commission funded SCHEMAS project, which indexes several metadata element sets as well as a large number of activity reports describing metadata related activities and initiatives. Metadata registries essentially provide an index of terms. Given the distributed nature of the Web, there are a number of ways this can be accomplished. For example, the registry could link to terms and definitions in schemas published by implementers and stored locally by the schema maintainer. Alternatively, the registry might harvest various metadata schemas from their maintainers. Registries provide 'added value' to users by indexing schemas relevant to a particular 'domain' or 'community of use' and by simplifying the navigation of terms by enabling multiple schemas to be accessed from one view. An important benefit of this approach is an increase in the reuse of existing terms, rather than users having to reinvent them. Merging schemas to one view leads to harmonization between applications and helps avoid duplication of effort. Additionally, the establishment of registries to index terms actively being used in local implementations facilitates the metadata standards activity by providing implementation experience transferable to the standards-making process.
  11. Baker, T.: ¬A grammar of Dublin Core (2000) 0.01
    0.0070206095 = product of:
      0.014041219 = sum of:
        0.014041219 = product of:
          0.028082438 = sum of:
            0.028082438 = weight(_text_:22 in 1236) [ClassicSimilarity], result of:
              0.028082438 = score(doc=1236,freq=2.0), product of:
                0.18145745 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051817898 = queryNorm
                0.15476047 = fieldWeight in 1236, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1236)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    26.12.2011 14:01:22
  12. Lagoze, C.: Keeping Dublin Core simple : Cross-domain discovery or resource description? (2001) 0.01
    0.0052429857 = product of:
      0.010485971 = sum of:
        0.010485971 = product of:
          0.020971943 = sum of:
            0.020971943 = weight(_text_:indexing in 1216) [ClassicSimilarity], result of:
              0.020971943 = score(doc=1216,freq=2.0), product of:
                0.19835205 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.051817898 = queryNorm
                0.105730906 = fieldWeight in 1216, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=1216)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Reality is messy. Individuals perceive or define objects differently. Objects may change over time, morphing into new versions of their former selves or into things altogether different. A book can give rise to a translation, derivation, or edition, and these resulting objects are related in complex ways to each other and to the people and contexts in which they were created or transformed. Providing a normalized view of such a messy reality is a precondition for managing information. From the first library catalogs, through Melvil Dewey's Decimal Classification system in the nineteenth century, to today's MARC encoding of AACR2 cataloging rules, libraries have epitomized the process of what David Levy calls "order making", whereby catalogers impose a veneer of regularity on the natural disorder of the artifacts they encounter. The pre-digital library within which the Catalog and its standards evolved was relatively self-contained and controlled. Creating and maintaining catalog records was, and still is, the task of professionals. Today's Web, in contrast, has brought together a diversity of information management communities, with a variety of order-making standards, into what Stuart Weibel has called the Internet Commons. The sheer scale of this context has motivated a search for new ways to describe and index information. Second-generation search engines such as Google can yield astonishingly good search results, while tools such as ResearchIndex for automatic citation indexing and techniques for inferring "Web communities" from constellations of hyperlinks promise even better methods for focusing queries on information from authoritative sources. Such "automated digital libraries," according to Bill Arms, promise to radically reduce the cost of managing information. Alongside the development of such automated methods, there is increasing interest in metadata as a means of imposing pre-defined order on Web content. While the size and changeability of the Web makes professional cataloging impractical, a minimal amount of information ordering, such as that represented by the Dublin Core (DC), may vastly improve the quality of an automatic index at low cost; indeed, recent work suggests that some types of simple description may be generated with little or no human intervention.