Search (5 results, page 1 of 1)

  • × theme_ss:"Metadaten"
  • × year_i:[2020 TO 2030}
  1. Vorndran, A.; Grund, S.: Metadata sharing : how to transfer metadata information among work cluster members (2021) 0.02
    0.024486622 = product of:
      0.048973244 = sum of:
        0.048973244 = product of:
          0.09794649 = sum of:
            0.09794649 = weight(_text_:work in 721) [ClassicSimilarity], result of:
              0.09794649 = score(doc=721,freq=8.0), product of:
                0.20127523 = queryWeight, product of:
                  3.6703904 = idf(docFreq=3060, maxDocs=44218)
                  0.054837555 = queryNorm
                0.4866296 = fieldWeight in 721, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.6703904 = idf(docFreq=3060, maxDocs=44218)
                  0.046875 = fieldNorm(doc=721)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The German National Library (DNB) is using a clustering technique to aggregate works from the database Culturegraph. Culturegraph collects bibliographic metadata records from all German Regional Library Networks, the Austrian Library Network, and DNB. This stock of about 180 million records serves as the basis for work clustering-the attempt to assemble all manifestations of a work in one cluster. The results of this work clustering are not employed in the display of search results, as other similar approaches successfully do, but for transferring metadata elements among the cluster members. In this paper the transfer of content-descriptive metadata elements such as controlled and uncontrolled index terms and classifications and links to name records in the German Integrated Authority File (GND) are described. In this way, standardization and cross linking can be improved and the richness of metadata description can be enhanced.
  2. Wu, M.; Liu, Y.-H.; Brownlee, R.; Zhang, X.: Evaluating utility and automatic classification of subject metadata from Research Data Australia (2021) 0.01
    0.012243311 = product of:
      0.024486622 = sum of:
        0.024486622 = product of:
          0.048973244 = sum of:
            0.048973244 = weight(_text_:work in 453) [ClassicSimilarity], result of:
              0.048973244 = score(doc=453,freq=2.0), product of:
                0.20127523 = queryWeight, product of:
                  3.6703904 = idf(docFreq=3060, maxDocs=44218)
                  0.054837555 = queryNorm
                0.2433148 = fieldWeight in 453, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.6703904 = idf(docFreq=3060, maxDocs=44218)
                  0.046875 = fieldNorm(doc=453)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this paper, we present a case study of how well subject metadata (comprising headings from an international classification scheme) has been deployed in a national data catalogue, and how often data seekers use subject metadata when searching for data. Through an analysis of user search behaviour as recorded in search logs, we find evidence that users utilise the subject metadata for data discovery. Since approximately half of the records ingested by the catalogue did not include subject metadata at the time of harvest, we experimented with automatic subject classification approaches in order to enrich these records and to provide additional support for user search and data discovery. Our results show that automatic methods work well for well represented categories of subject metadata, and these categories tend to have features that can distinguish themselves from the other categories. Our findings raise implications for data catalogue providers; they should invest more effort to enhance the quality of data records by providing an adequate description of these records for under-represented subject categories.
  3. Sewing, S.: Bestandserhaltung und Archivierung : Koordinierung auf der Basis eines gemeinsamen Metadatenformates in den deutschen und österreichischen Bibliotheksverbünden (2021) 0.01
    0.011144597 = product of:
      0.022289194 = sum of:
        0.022289194 = product of:
          0.04457839 = sum of:
            0.04457839 = weight(_text_:22 in 266) [ClassicSimilarity], result of:
              0.04457839 = score(doc=266,freq=2.0), product of:
                0.19203177 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.054837555 = queryNorm
                0.23214069 = fieldWeight in 266, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=266)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 5.2021 12:43:05
  4. Laparra, E.; Binford-Walsh, A.; Emerson, K.; Miller, M.L.; López-Hoffman, L.; Currim, F.; Bethard, S.: Addressing structural hurdles for metadata extraction from environmental impact statements (2023) 0.01
    0.010202759 = product of:
      0.020405518 = sum of:
        0.020405518 = product of:
          0.040811036 = sum of:
            0.040811036 = weight(_text_:work in 1042) [ClassicSimilarity], result of:
              0.040811036 = score(doc=1042,freq=2.0), product of:
                0.20127523 = queryWeight, product of:
                  3.6703904 = idf(docFreq=3060, maxDocs=44218)
                  0.054837555 = queryNorm
                0.20276234 = fieldWeight in 1042, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.6703904 = idf(docFreq=3060, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1042)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Natural language processing techniques can be used to analyze the linguistic content of a document to extract missing pieces of metadata. However, accurate metadata extraction may not depend solely on the linguistics, but also on structural problems such as extremely large documents, unordered multi-file documents, and inconsistency in manually labeled metadata. In this work, we start from two standard machine learning solutions to extract pieces of metadata from Environmental Impact Statements, environmental policy documents that are regularly produced under the US National Environmental Policy Act of 1969. We present a series of experiments where we evaluate how these standard approaches are affected by different issues derived from real-world data. We find that metadata extraction can be strongly influenced by nonlinguistic factors such as document length and volume ordering and that the standard machine learning solutions often do not scale well to long documents. We demonstrate how such solutions can be better adapted to these scenarios, and conclude with suggestions for other NLP practitioners cataloging large document collections.
  5. Baroncini, S.; Sartini, B.; Erp, M. Van; Tomasi, F.; Gangemi, A.: Is dc:subject enough? : A landscape on iconography and iconology statements of knowledge graphs in the semantic web (2023) 0.01
    0.008162207 = product of:
      0.016324414 = sum of:
        0.016324414 = product of:
          0.032648828 = sum of:
            0.032648828 = weight(_text_:work in 1030) [ClassicSimilarity], result of:
              0.032648828 = score(doc=1030,freq=2.0), product of:
                0.20127523 = queryWeight, product of:
                  3.6703904 = idf(docFreq=3060, maxDocs=44218)
                  0.054837555 = queryNorm
                0.16220987 = fieldWeight in 1030, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.6703904 = idf(docFreq=3060, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1030)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In the last few years, the size of Linked Open Data (LOD) describing artworks, in general or domain-specific Knowledge Graphs (KGs), is gradually increasing. This provides (art-)historians and Cultural Heritage professionals with a wealth of information to explore. Specifically, structured data about iconographical and iconological (icon) aspects, i.e. information about the subjects, concepts and meanings of artworks, are extremely valuable for the state-of-the-art of computational tools, e.g. content recognition through computer vision. Nevertheless, a data quality evaluation for art domains, fundamental for data reuse, is still missing. The purpose of this study is filling this gap with an overview of art-historical data quality in current KGs with a focus on the icon aspects. Design/methodology/approach This study's analyses are based on established KG evaluation methodologies, adapted to the domain by addressing requirements from art historians' theories. The authors first select several KGs according to Semantic Web principles. Then, the authors evaluate (1) their structures' suitability to describe icon information through quantitative and qualitative assessment and (2) their content, qualitatively assessed in terms of correctness and completeness. Findings This study's results reveal several issues on the current expression of icon information in KGs. The content evaluation shows that these domain-specific statements are generally correct but often not complete. The incompleteness is confirmed by the structure evaluation, which highlights the unsuitability of the KG schemas to describe icon information with the required granularity. Originality/value The main contribution of this work is an overview of the actual landscape of the icon information expressed in LOD. Therefore, it is valuable to cultural institutions by providing them a first domain-specific data quality evaluation. Since this study's results suggest that the selected domain information is underrepresented in Semantic Web datasets, the authors highlight the need for the creation and fostering of such information to provide a more thorough art-historical dimension to LOD.