Search (6 results, page 1 of 1)

  • × theme_ss:"Retrievalalgorithmen"
  • × theme_ss:"Semantisches Umfeld in Indexierung u. Retrieval"
  • × year_i:[2010 TO 2020}
  1. Symonds, M.; Bruza, P.; Zuccon, G.; Koopman, B.; Sitbon, L.; Turner, I.: Automatic query expansion : a structural linguistic perspective (2014) 0.00
    0.0025370158 = product of:
      0.0050740317 = sum of:
        0.0050740317 = product of:
          0.010148063 = sum of:
            0.010148063 = weight(_text_:a in 1338) [ClassicSimilarity], result of:
              0.010148063 = score(doc=1338,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19109234 = fieldWeight in 1338, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1338)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A user's query is considered to be an imprecise description of their information need. Automatic query expansion is the process of reformulating the original query with the goal of improving retrieval effectiveness. Many successful query expansion techniques model syntagmatic associations that infer two terms co-occur more often than by chance in natural language. However, structural linguistics relies on both syntagmatic and paradigmatic associations to deduce the meaning of a word. Given the success of dependency-based approaches to query expansion and the reliance on word meanings in the query formulation process, we argue that modeling both syntagmatic and paradigmatic information in the query expansion process improves retrieval effectiveness. This article develops and evaluates a new query expansion technique that is based on a formal, corpus-based model of word meaning that models syntagmatic and paradigmatic associations. We demonstrate that when sufficient statistical information exists, as in the case of longer queries, including paradigmatic information alone provides significant improvements in retrieval effectiveness across a wide variety of data sets. More generally, when our new query expansion approach is applied to large-scale web retrieval it demonstrates significant improvements in retrieval effectiveness over a strong baseline system, based on a commercial search engine.
    Type
    a
  2. Liu, X.; Zheng, W.; Fang, H.: ¬An exploration of ranking models and feedback method for related entity finding (2013) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 2714) [ClassicSimilarity], result of:
              0.008285859 = score(doc=2714,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 2714, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2714)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Most existing search engines focus on document retrieval. However, information needs are certainly not limited to finding relevant documents. Instead, a user may want to find relevant entities such as persons and organizations. In this paper, we study the problem of related entity finding. Our goal is to rank entities based on their relevance to a structured query, which specifies an input entity, the type of related entities and the relation between the input and related entities. We first discuss a general probabilistic framework, derive six possible retrieval models to rank the related entities, and then compare these models both analytically and empirically. To further improve performance, we study the problem of feedback in the context of related entity finding. Specifically, we propose a mixture model based feedback method that can utilize the pseudo feedback entities to estimate an enriched model for the relation between the input and related entities. Experimental results over two standard TREC collections show that the derived relation generation model combined with a relation feedback method performs better than other models.
    Type
    a
  3. Zhang, W.; Yoshida, T.; Tang, X.: ¬A comparative study of TF*IDF, LSI and multi-words for text classification (2011) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 1165) [ClassicSimilarity], result of:
              0.007030784 = score(doc=1165,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 1165, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1165)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    One of the main themes in text mining is text representation, which is fundamental and indispensable for text-based intellegent information processing. Generally, text representation inludes two tasks: indexing and weighting. This paper has comparatively studied TF*IDF, LSI and multi-word for text representation. We used a Chinese and an English document collection to respectively evaluate the three methods in information retreival and text categorization. Experimental results have demonstrated that in text categorization, LSI has better performance than other methods in both document collections. Also, LSI has produced the best performance in retrieving English documents. This outcome has shown that LSI has both favorable semantic and statistical quality and is different with the claim that LSI can not produce discriminative power for indexing.
    Type
    a
  4. Bhansali, D.; Desai, H.; Deulkar, K.: ¬A study of different ranking approaches for semantic search (2015) 0.00
    0.0014647468 = product of:
      0.0029294936 = sum of:
        0.0029294936 = product of:
          0.005858987 = sum of:
            0.005858987 = weight(_text_:a in 2696) [ClassicSimilarity], result of:
              0.005858987 = score(doc=2696,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.11032722 = fieldWeight in 2696, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2696)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Search Engines have become an integral part of our day to day life. Our reliance on search engines increases with every passing day. With the amount of data available on Internet increasing exponentially, it becomes important to develop new methods and tools that help to return results relevant to the queries and reduce the time spent on searching. The results should be diverse but at the same time should return results focused on the queries asked. Relation Based Page Rank [4] algorithms are considered to be the next frontier in improvement of Semantic Web Search. The probability of finding relevance in the search results as posited by the user while entering the query is used to measure the relevance. However, its application is limited by the complexity of determining relation between the terms and assigning explicit meaning to each term. Trust Rank is one of the most widely used ranking algorithms for semantic web search. Few other ranking algorithms like HITS algorithm, PageRank algorithm are also used for Semantic Web Searching. In this paper, we will provide a comparison of few ranking approaches.
    Type
    a
  5. Jindal, V.; Bawa, S.; Batra, S.: ¬A review of ranking approaches for semantic search on Web (2014) 0.00
    0.0014351527 = product of:
      0.0028703054 = sum of:
        0.0028703054 = product of:
          0.005740611 = sum of:
            0.005740611 = weight(_text_:a in 2799) [ClassicSimilarity], result of:
              0.005740611 = score(doc=2799,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10809815 = fieldWeight in 2799, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2799)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  6. Xu, B.; Lin, H.; Lin, Y.: Assessment of learning to rank methods for query expansion (2016) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 2929) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=2929,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 2929, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2929)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Pseudo relevance feedback, as an effective query expansion method, can significantly improve information retrieval performance. However, the method may negatively impact the retrieval performance when some irrelevant terms are used in the expanded query. Therefore, it is necessary to refine the expansion terms. Learning to rank methods have proven effective in information retrieval to solve ranking problems by ranking the most relevant documents at the top of the returned list, but few attempts have been made to employ learning to rank methods for term refinement in pseudo relevance feedback. This article proposes a novel framework to explore the feasibility of using learning to rank to optimize pseudo relevance feedback by means of reranking the candidate expansion terms. We investigate some learning approaches to choose the candidate terms and introduce some state-of-the-art learning to rank methods to refine the expansion terms. In addition, we propose two term labeling strategies and examine the usefulness of various term features to optimize the framework. Experimental results with three TREC collections show that our framework can effectively improve retrieval performance.
    Type
    a