Search (34 results, page 2 of 2)

  • × theme_ss:"Retrievalalgorithmen"
  • × theme_ss:"Suchmaschinen"
  1. White, R.W.; Jose, J.M.; Ruthven, I.: Using top-ranking sentences to facilitate effective information access (2005) 0.00
    3.6771328E-4 = product of:
      0.0062511256 = sum of:
        0.0062511256 = weight(_text_:in in 3881) [ClassicSimilarity], result of:
          0.0062511256 = score(doc=3881,freq=12.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.18406484 = fieldWeight in 3881, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3881)
      0.05882353 = coord(1/17)
    
    Abstract
    Web searchers typically fall to view search results beyond the first page nor fully examine those results presented to them. In this article we describe an approach that encourages a deeper examination of the contents of the document set retrieved in response to a searcher's query. The approach shifts the focus of perusal and interaction away from potentially uninformative document surrogates (such as titles, sentence fragments, and URLs) to actual document content, and uses this content to drive the information seeking process. Current search interfaces assume searchers examine results document-by-document. In contrast our approach extracts, ranks, and presents the contents of the top-ranked document set. We use query-relevant topranking sentences extracted from the top documents at retrieval time as fine-grained representations of topranked document content and, when combined in a ranked list, an overview of these documents. The interaction of the searcher provides implicit evidence that is used to reorder the sentences where appropriate. We evaluate our approach in three separate user studies, each applying these sentences in a different way. The findings of these studies show that top-ranking sentences can facilitate effective information access.
  2. Lempel, R.; Moran, S.: SALSA: the stochastic approach for link-structure analysis (2001) 0.00
    3.6771328E-4 = product of:
      0.0062511256 = sum of:
        0.0062511256 = weight(_text_:in in 10) [ClassicSimilarity], result of:
          0.0062511256 = score(doc=10,freq=12.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.18406484 = fieldWeight in 10, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=10)
      0.05882353 = coord(1/17)
    
    Abstract
    Today, when searching for information on the WWW, one usually performs a query through a term-based search engine. These engines return, as the query's result, a list of Web pages whose contents matches the query. For broad-topic queries, such searches often result in a huge set of retrieved documents, many of which are irrelevant to the user. However, much information is contained in the link-structure of the WWW. Information such as which pages are linked to others can be used to augment search algorithms. In this context, Jon Kleinberg introduced the notion of two distinct types of Web pages: hubs and authorities. Kleinberg argued that hubs and authorities exhibit a mutually reinforcing relationship: a good hub will point to many authorities, and a good authority will be pointed at by many hubs. In light of this, he dervised an algoirthm aimed at finding authoritative pages. We present SALSA, a new stochastic approach for link-structure analysis, which examines random walks on graphs derived from the link-structure. We show that both SALSA and Kleinberg's Mutual Reinforcement approach employ the same metaalgorithm. We then prove that SALSA is quivalent to a weighted in degree analysis of the link-sturcutre of WWW subgraphs, making it computationally more efficient than the Mutual reinforcement approach. We compare that results of applying SALSA to the results derived through Kleinberg's approach. These comparisions reveal a topological Phenomenon called the TKC effectwhich, in certain cases, prevents the Mutual reinforcement approach from identifying meaningful authorities.
  3. Courtois, M.P.; Berry, M.W.: Results ranking in Web search engines (1999) 0.00
    3.0023666E-4 = product of:
      0.005104023 = sum of:
        0.005104023 = weight(_text_:in in 3726) [ClassicSimilarity], result of:
          0.005104023 = score(doc=3726,freq=2.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.15028831 = fieldWeight in 3726, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.078125 = fieldNorm(doc=3726)
      0.05882353 = coord(1/17)
    
  4. Weinstein, A.: Hochprozentig : Tipps and tricks für ein Top-Ranking (2002) 0.00
    3.0023666E-4 = product of:
      0.005104023 = sum of:
        0.005104023 = weight(_text_:in in 1083) [ClassicSimilarity], result of:
          0.005104023 = score(doc=1083,freq=2.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.15028831 = fieldWeight in 1083, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.078125 = fieldNorm(doc=1083)
      0.05882353 = coord(1/17)
    
    Abstract
    Die Suchmaschinen haben in den letzten Monaten an ihren Ranking-Algorithmen gefeilt, um Spamern das Handwerk zu erschweren. Internet Pro beleuchtet die Trends im Suchmaschinen-Marketing
  5. Bhansali, D.; Desai, H.; Deulkar, K.: ¬A study of different ranking approaches for semantic search (2015) 0.00
    3.0023666E-4 = product of:
      0.005104023 = sum of:
        0.005104023 = weight(_text_:in in 2696) [ClassicSimilarity], result of:
          0.005104023 = score(doc=2696,freq=8.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.15028831 = fieldWeight in 2696, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2696)
      0.05882353 = coord(1/17)
    
    Abstract
    Search Engines have become an integral part of our day to day life. Our reliance on search engines increases with every passing day. With the amount of data available on Internet increasing exponentially, it becomes important to develop new methods and tools that help to return results relevant to the queries and reduce the time spent on searching. The results should be diverse but at the same time should return results focused on the queries asked. Relation Based Page Rank [4] algorithms are considered to be the next frontier in improvement of Semantic Web Search. The probability of finding relevance in the search results as posited by the user while entering the query is used to measure the relevance. However, its application is limited by the complexity of determining relation between the terms and assigning explicit meaning to each term. Trust Rank is one of the most widely used ranking algorithms for semantic web search. Few other ranking algorithms like HITS algorithm, PageRank algorithm are also used for Semantic Web Searching. In this paper, we will provide a comparison of few ranking approaches.
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  6. Bilal, D.: Ranking, relevance judgment, and precision of information retrieval on children's queries : evaluation of Google, Yahoo!, Bing, Yahoo! Kids, and ask Kids (2012) 0.00
    2.6853982E-4 = product of:
      0.004565177 = sum of:
        0.004565177 = weight(_text_:in in 393) [ClassicSimilarity], result of:
          0.004565177 = score(doc=393,freq=10.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.13442196 = fieldWeight in 393, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=393)
      0.05882353 = coord(1/17)
    
    Abstract
    This study employed benchmarking and intellectual relevance judgment in evaluating Google, Yahoo!, Bing, Yahoo! Kids, and Ask Kids on 30 queries that children formulated to find information for specific tasks. Retrieved hits on given queries were benchmarked to Google's and Yahoo! Kids' top-five ranked hits retrieved. Relevancy of hits was judged on a graded scale; precision was calculated using the precision-at-ten metric (P@10). Yahoo! and Bing produced a similar percentage in hit overlap with Google (nearly 30%), but differed in the ranking of hits. Ask Kids retrieved 11% in hit overlap with Google versus 3% by Yahoo! Kids. The engines retrieved 26 hits across query clusters that overlapped with Yahoo! Kids' top-five ranked hits. Precision (P) that the engines produced across the queries was P = 0.48 for relevant hits, and P = 0.28 for partially relevant hits. Precision by Ask Kids was P = 0.44 for relevant hits versus P = 0.21 by Yahoo! Kids. Bing produced the highest total precision (TP) of relevant hits (TP = 0.86) across the queries, and Yahoo! Kids yielded the lowest (TP = 0.47). Average precision (AP) of relevant hits was AP = 0.56 by leading engines versus AP = 0.29 by small engines. In contrast, average precision of partially relevant hits was AP = 0.83 by small engines versus AP = 0.33 by leading engines. Average precision of relevant hits across the engines was highest on two-word queries and lowest on one-word queries. Google performed best on natural language queries; Bing did the same (P = 0.69) on two-word queries. The findings have implications for search engine ranking algorithms, relevance theory, search engine design, research design, and information literacy.
  7. Watters, C.; Amoudi, A.: Geosearcher : location-based ranking of search engine results (2003) 0.00
    2.6001257E-4 = product of:
      0.004420214 = sum of:
        0.004420214 = weight(_text_:in in 5152) [ClassicSimilarity], result of:
          0.004420214 = score(doc=5152,freq=6.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.1301535 = fieldWeight in 5152, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5152)
      0.05882353 = coord(1/17)
    
    Abstract
    Waters and Amoudi describe GeoSearcher, a prototype ranking program that arranges search engine results along a geo-spatial dimension without the provision of geo-spatial meta-tags or the use of geo-spatial feature extraction. GeoSearcher uses URL analysis, IptoLL, Whois, and the Getty Thesaurus of Geographic Names to determine site location. It accepts the first 200 sites returned by a search engine, identifies the coordinates, calculates their distance from a reference point and ranks in ascending order by this value. For any retrieved site the system checks if it has already been located in the current session, then sends the domain name to Whois to generate a return of a two letter country code and an area code. With no success the name is stripped one level and resent. If this fails the top level domain is tested for being a country code. Any remaining unmatched names go to IptoLL. Distance is calculated using the center point of the geographic area and a provided reference location. A test run on a set of 100 URLs from a search was successful in locating 90 sites. Eighty three pages could be manually found and 68 had sufficient information to verify location determination. Of these 65 ( 95%) had been assigned reasonably correct geographic locations. A random set of URLs used instead of a search result, yielded 80% success.
  8. Thelwall, M.; Vaughan, L.: New versions of PageRank employing alternative Web document models (2004) 0.00
    2.5475924E-4 = product of:
      0.004330907 = sum of:
        0.004330907 = weight(_text_:in in 674) [ClassicSimilarity], result of:
          0.004330907 = score(doc=674,freq=4.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.12752387 = fieldWeight in 674, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=674)
      0.05882353 = coord(1/17)
    
    Abstract
    Introduces several new versions of PageRank (the link based Web page ranking algorithm), based on an information science perspective on the concept of the Web document. Although the Web page is the typical indivisible unit of information in search engine results and most Web information retrieval algorithms, other research has suggested that aggregating pages based on directories and domains gives promising alternatives, particularly when Web links are the object of study. The new algorithms introduced based on these alternatives were used to rank four sets of Web pages. The ranking results were compared with human subjects' rankings. The results of the tests were somewhat inconclusive: the new approach worked well for the set that includes pages from different Web sites; however, it does not work well in ranking pages that are from the same site. It seems that the new algorithms may be effective for some tasks but not for others, especially when only low numbers of links are involved or the pages to be ranked are from the same site or directory.
  9. Langville, A.N.; Meyer, C.D.: Google's PageRank and beyond : the science of search engine rankings (2006) 0.00
    2.5475924E-4 = product of:
      0.004330907 = sum of:
        0.004330907 = weight(_text_:in in 6) [ClassicSimilarity], result of:
          0.004330907 = score(doc=6,freq=16.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.12752387 = fieldWeight in 6, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0234375 = fieldNorm(doc=6)
      0.05882353 = coord(1/17)
    
    Abstract
    Why doesn't your home page appear on the first page of search results, even when you query your own name? How do other Web pages always appear at the top? What creates these powerful rankings? And how? The first book ever about the science of Web page rankings, "Google's PageRank and Beyond" supplies the answers to these and other questions and more. The book serves two very different audiences: the curious science reader and the technical computational reader. The chapters build in mathematical sophistication, so that the first five are accessible to the general academic reader. While other chapters are much more mathematical in nature, each one contains something for both audiences. For example, the authors include entertaining asides such as how search engines make money and how the Great Firewall of China influences research. The book includes an extensive background chapter designed to help readers learn more about the mathematics of search engines, and it contains several MATLAB codes and links to sample Web data sets. The philosophy throughout is to encourage readers to experiment with the ideas and algorithms in the text. Any business seriously interested in improving its rankings in the major search engines can benefit from the clear examples, sample code, and list of resources provided. It includes: many illustrative examples and entertaining asides; MATLAB code; accessible and informal style; and complete and self-contained section for mathematics review.
    Content
    Inhalt: Chapter 1. Introduction to Web Search Engines: 1.1 A Short History of Information Retrieval - 1.2 An Overview of Traditional Information Retrieval - 1.3 Web Information Retrieval Chapter 2. Crawling, Indexing, and Query Processing: 2.1 Crawling - 2.2 The Content Index - 2.3 Query Processing Chapter 3. Ranking Webpages by Popularity: 3.1 The Scene in 1998 - 3.2 Two Theses - 3.3 Query-Independence Chapter 4. The Mathematics of Google's PageRank: 4.1 The Original Summation Formula for PageRank - 4.2 Matrix Representation of the Summation Equations - 4.3 Problems with the Iterative Process - 4.4 A Little Markov Chain Theory - 4.5 Early Adjustments to the Basic Model - 4.6 Computation of the PageRank Vector - 4.7 Theorem and Proof for Spectrum of the Google Matrix Chapter 5. Parameters in the PageRank Model: 5.1 The a Factor - 5.2 The Hyperlink Matrix H - 5.3 The Teleportation Matrix E Chapter 6. The Sensitivity of PageRank; 6.1 Sensitivity with respect to alpha - 6.2 Sensitivity with respect to H - 6.3 Sensitivity with respect to vT - 6.4 Other Analyses of Sensitivity - 6.5 Sensitivity Theorems and Proofs Chapter 7. The PageRank Problem as a Linear System: 7.1 Properties of (I - alphaS) - 7.2 Properties of (I - alphaH) - 7.3 Proof of the PageRank Sparse Linear System Chapter 8. Issues in Large-Scale Implementation of PageRank: 8.1 Storage Issues - 8.2 Convergence Criterion - 8.3 Accuracy - 8.4 Dangling Nodes - 8.5 Back Button Modeling
  10. Jindal, V.; Bawa, S.; Batra, S.: ¬A review of ranking approaches for semantic search on Web (2014) 0.00
    2.5475924E-4 = product of:
      0.004330907 = sum of:
        0.004330907 = weight(_text_:in in 2799) [ClassicSimilarity], result of:
          0.004330907 = score(doc=2799,freq=4.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.12752387 = fieldWeight in 2799, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2799)
      0.05882353 = coord(1/17)
    
    Abstract
    With ever increasing information being available to the end users, search engines have become the most powerful tools for obtaining useful information scattered on the Web. However, it is very common that even most renowned search engines return result sets with not so useful pages to the user. Research on semantic search aims to improve traditional information search and retrieval methods where the basic relevance criteria rely primarily on the presence of query keywords within the returned pages. This work is an attempt to explore different relevancy ranking approaches based on semantics which are considered appropriate for the retrieval of relevant information. In this paper, various pilot projects and their corresponding outcomes have been investigated based on methodologies adopted and their most distinctive characteristics towards ranking. An overview of selected approaches and their comparison by means of the classification criteria has been presented. With the help of this comparison, some common concepts and outstanding features have been identified.
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  11. Berry, M.W.; Browne, M.: Understanding search engines : mathematical modeling and text retrieval (2005) 0.00
    2.401893E-4 = product of:
      0.004083218 = sum of:
        0.004083218 = weight(_text_:in in 7) [ClassicSimilarity], result of:
          0.004083218 = score(doc=7,freq=8.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.120230645 = fieldWeight in 7, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=7)
      0.05882353 = coord(1/17)
    
    Abstract
    The second edition of Understanding Search Engines: Mathematical Modeling and Text Retrieval follows the basic premise of the first edition by discussing many of the key design issues for building search engines and emphasizing the important role that applied mathematics can play in improving information retrieval. The authors discuss important data structures, algorithms, and software as well as user-centered issues such as interfaces, manual indexing, and document preparation. Significant changes bring the text up to date on current information retrieval methods: for example the addition of a new chapter on link-structure algorithms used in search engines such as Google. The chapter on user interface has been rewritten to specifically focus on search engine usability. In addition the authors have added new recommendations for further reading and expanded the bibliography, and have updated and streamlined the index to make it more reader friendly.
    Content
    Inhalt: Introduction Document File Preparation - Manual Indexing - Information Extraction - Vector Space Modeling - Matrix Decompositions - Query Representations - Ranking and Relevance Feedback - Searching by Link Structure - User Interface - Book Format Document File Preparation Document Purification and Analysis - Text Formatting - Validation - Manual Indexing - Automatic Indexing - Item Normalization - Inverted File Structures - Document File - Dictionary List - Inversion List - Other File Structures Vector Space Models Construction - Term-by-Document Matrices - Simple Query Matching - Design Issues - Term Weighting - Sparse Matrix Storage - Low-Rank Approximations Matrix Decompositions QR Factorization - Singular Value Decomposition - Low-Rank Approximations - Query Matching - Software - Semidiscrete Decomposition - Updating Techniques Query Management Query Binding - Types of Queries - Boolean Queries - Natural Language Queries - Thesaurus Queries - Fuzzy Queries - Term Searches - Probabilistic Queries Ranking and Relevance Feedback Performance Evaluation - Precision - Recall - Average Precision - Genetic Algorithms - Relevance Feedback Searching by Link Structure HITS Method - HITS Implementation - HITS Summary - PageRank Method - PageRank Adjustments - PageRank Implementation - PageRank Summary User Interface Considerations General Guidelines - Search Engine Interfaces - Form Fill-in - Display Considerations - Progress Indication - No Penalties for Error - Results - Test and Retest - Final Considerations Further Reading
  12. Dominich, S.; Skrop, A.: PageRank and interaction information retrieval (2005) 0.00
    1.8014197E-4 = product of:
      0.0030624135 = sum of:
        0.0030624135 = weight(_text_:in in 3268) [ClassicSimilarity], result of:
          0.0030624135 = score(doc=3268,freq=2.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.09017298 = fieldWeight in 3268, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=3268)
      0.05882353 = coord(1/17)
    
    Abstract
    The PageRank method is used by the Google Web search engine to compute the importance of Web pages. Two different views have been developed for the Interpretation of the PageRank method and values: (a) stochastic (random surfer): the PageRank values can be conceived as the steady-state distribution of a Markov chain, and (b) algebraic: the PageRank values form the eigenvector corresponding to eigenvalue 1 of the Web link matrix. The Interaction Information Retrieval (1**2 R) method is a nonclassical information retrieval paradigm, which represents a connectionist approach based an dynamic systems. In the present paper, a different Interpretation of PageRank is proposed, namely, a dynamic systems viewpoint, by showing that the PageRank method can be formally interpreted as a particular case of the Interaction Information Retrieval method; and thus, the PageRank values may be interpreted as neutral equilibrium points of the Web.
  13. Radev, D.; Fan, W.; Qu, H.; Wu, H.; Grewal, A.: Probabilistic question answering on the Web (2005) 0.00
    1.8014197E-4 = product of:
      0.0030624135 = sum of:
        0.0030624135 = weight(_text_:in in 3455) [ClassicSimilarity], result of:
          0.0030624135 = score(doc=3455,freq=2.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.09017298 = fieldWeight in 3455, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=3455)
      0.05882353 = coord(1/17)
    
    Abstract
    Web-based search engines such as Google and NorthernLight return documents that are relevant to a user query, not answers to user questions. We have developed an architecture that augments existing search engines so that they support natural language question answering. The process entails five steps: query modulation, document retrieval, passage extraction, phrase extraction, and answer ranking. In this article, we describe some probabilistic approaches to the last three of these stages. We show how our techniques apply to a number of existing search engines, and we also present results contrasting three different methods for question answering. Our algorithm, probabilistic phrase reranking (PPR), uses proximity and question type features and achieves a total reciprocal document rank of .20 an the TREC8 corpus. Our techniques have been implemented as a Web-accessible system, called NSIR.
  14. Chen, Z.; Meng, X.; Fowler, R.H.; Zhu, B.: Real-time adaptive feature and document learning for Web search (2001) 0.00
    1.5011833E-4 = product of:
      0.0025520115 = sum of:
        0.0025520115 = weight(_text_:in in 5209) [ClassicSimilarity], result of:
          0.0025520115 = score(doc=5209,freq=2.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.07514416 = fieldWeight in 5209, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5209)
      0.05882353 = coord(1/17)
    
    Abstract
    Chen et alia report on the design of FEATURES, a web search engine with adaptive features based on minimal relevance feedback. Rather than developing user profiles from previous searcher activity either at the server or client location, or updating indexes after search completion, FEATURES allows for index and user characterization files to be updated during query modification on retrieval from a general purpose search engine. Indexing terms relevant to a query are defined as the union of all terms assigned to documents retrieved by the initial search run and are used to build a vector space model on this retrieved set. The top ten weighted terms are presented to the user for a relevant non-relevant choice which is used to modify the term weights. Documents are chosen if their summed term weights are greater than some threshold. A user evaluation of the top ten ranked documents as non-relevant will decrease these term weights and a positive judgement will increase them. A new ordering of the retrieved set will generate new display lists of terms and documents. Precision is improved in a test on Alta Vista searches.

Languages

  • e 24
  • d 10

Types

  • a 28
  • m 3
  • el 2
  • r 1
  • x 1
  • More… Less…