Search (17 results, page 1 of 1)

  • × theme_ss:"Retrievalalgorithmen"
  • × type_ss:"a"
  • × year_i:[1990 TO 2000}
  1. Savoy, J.: Ranking schemes in hybrid Boolean systems : a new approach (1997) 0.02
    0.020556571 = product of:
      0.095930666 = sum of:
        0.02546139 = weight(_text_:subject in 393) [ClassicSimilarity], result of:
          0.02546139 = score(doc=393,freq=2.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.23709705 = fieldWeight in 393, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.046875 = fieldNorm(doc=393)
        0.040303055 = product of:
          0.08060611 = sum of:
            0.08060611 = weight(_text_:schemes in 393) [ClassicSimilarity], result of:
              0.08060611 = score(doc=393,freq=4.0), product of:
                0.16067243 = queryWeight, product of:
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.03002521 = queryNorm
                0.5016798 = fieldWeight in 393, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.046875 = fieldNorm(doc=393)
          0.5 = coord(1/2)
        0.030166224 = weight(_text_:bibliographic in 393) [ClassicSimilarity], result of:
          0.030166224 = score(doc=393,freq=2.0), product of:
            0.11688946 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.03002521 = queryNorm
            0.2580748 = fieldWeight in 393, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.046875 = fieldNorm(doc=393)
      0.21428572 = coord(3/14)
    
    Abstract
    In most commercial online systems, the retrieval system is based on the Boolean model and its inverted file organization. Since the investment in these systems is so great and changing them could be economically unfeasible, this article suggests a new ranking scheme especially adapted for hypertext environments in order to produce more effective retrieval results and yet maintain the effectiveness of the investment made to date in the Boolean model. To select the retrieved documents, the suggested ranking strategy uses multiple sources of document content evidence. The proposed scheme integrates both the information provided by the index and query terms, and the inherent relationships between documents such as bibliographic references or hypertext links. We will demonstrate that our scheme represents an integration of both subject and citation indexing, and results in a significant imporvement over classical ranking schemes uses in hybrid Boolean systems, while preserving its efficiency. Moreover, through knowing the nearest neighbor and the hypertext links which constitute additional sources of evidence, our strategy will take them into account in order to further improve retrieval effectiveness and to provide 'good' starting points for browsing in a hypertext or hypermedia environement
  2. Faloutsos, C.: Signature files (1992) 0.02
    0.015022537 = product of:
      0.07010517 = sum of:
        0.026916584 = weight(_text_:classification in 3499) [ClassicSimilarity], result of:
          0.026916584 = score(doc=3499,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.28149095 = fieldWeight in 3499, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0625 = fieldNorm(doc=3499)
        0.026916584 = weight(_text_:classification in 3499) [ClassicSimilarity], result of:
          0.026916584 = score(doc=3499,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.28149095 = fieldWeight in 3499, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0625 = fieldNorm(doc=3499)
        0.016272005 = product of:
          0.03254401 = sum of:
            0.03254401 = weight(_text_:22 in 3499) [ClassicSimilarity], result of:
              0.03254401 = score(doc=3499,freq=2.0), product of:
                0.10514317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03002521 = queryNorm
                0.30952093 = fieldWeight in 3499, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3499)
          0.5 = coord(1/2)
      0.21428572 = coord(3/14)
    
    Abstract
    Presents a survey and discussion on signature-based text retrieval methods. It describes the main idea behind the signature approach and its advantages over other text retrieval methods, it provides a classification of the signature methods that have appeared in the literature, it describes the main representatives of each class, together with the relative advantages and drawbacks, and it gives a list of applications as well as commercial or university prototypes that use the signature approach
    Date
    7. 5.1999 15:22:48
  3. Green, R.: Topical relevance relationships : 2: an exploratory study and preliminary typology (1995) 0.01
    0.012545095 = product of:
      0.08781566 = sum of:
        0.036007844 = weight(_text_:subject in 3724) [ClassicSimilarity], result of:
          0.036007844 = score(doc=3724,freq=4.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.33530587 = fieldWeight in 3724, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.046875 = fieldNorm(doc=3724)
        0.051807817 = product of:
          0.103615634 = sum of:
            0.103615634 = weight(_text_:texts in 3724) [ClassicSimilarity], result of:
              0.103615634 = score(doc=3724,freq=6.0), product of:
                0.16460659 = queryWeight, product of:
                  5.4822793 = idf(docFreq=499, maxDocs=44218)
                  0.03002521 = queryNorm
                0.6294744 = fieldWeight in 3724, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.4822793 = idf(docFreq=499, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3724)
          0.5 = coord(1/2)
      0.14285715 = coord(2/14)
    
    Abstract
    The assumption of topic matching between user needs and texts topically relevant to those needs is often erroneous. Reports an emprical investigantion of the question 'what relationship types actually account for topical relevance'? In order to avoid the bias to topic matching search strategies, user needs are back generated from a randomly selected subset of the subject headings employed in a user oriented topical concordance. The corresponding relevant texts are those indicated in the concordance under the subject heading. Compares the topics of the user needs with the topics of the relevant texts to determine the relationships between them. Topical relevance relationships include a large variety of relationships, only some of which are matching relationships. Others are examples of paradigmatic or syntagmatic relationships. There appear to be no constraints on the kinds of relationships that can function as topical relevance relationships. They are distinguishable from other types of relationships only on functional grounds
  4. Carpineto, C.; Romano, G.: Information retrieval through hybrid navigation of lattice representations (1996) 0.01
    0.010012914 = product of:
      0.0700904 = sum of:
        0.035193928 = weight(_text_:bibliographic in 7434) [ClassicSimilarity], result of:
          0.035193928 = score(doc=7434,freq=2.0), product of:
            0.11688946 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.03002521 = queryNorm
            0.30108726 = fieldWeight in 7434, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.0546875 = fieldNorm(doc=7434)
        0.034896467 = product of:
          0.069792934 = sum of:
            0.069792934 = weight(_text_:texts in 7434) [ClassicSimilarity], result of:
              0.069792934 = score(doc=7434,freq=2.0), product of:
                0.16460659 = queryWeight, product of:
                  5.4822793 = idf(docFreq=499, maxDocs=44218)
                  0.03002521 = queryNorm
                0.42399842 = fieldWeight in 7434, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.4822793 = idf(docFreq=499, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=7434)
          0.5 = coord(1/2)
      0.14285715 = coord(2/14)
    
    Abstract
    Presents a comprehensive approach to automatic organization and hybrid navigation of text databases. An organizing stage builds a particular lattice representation of the data, through text indexing followed by lattice clustering of the indexed texts. The lattice representation supports the navigation state of the system, a visual retrieval interface that combines 3 main retrieval strategies: browsing, querying, and bounding. Such a hybrid paradigm permits high flexibility in trading off information exploration and retrieval, and had good retrieval performance. Compares information retrieval using lattice-based hybrid navigation with conventional Boolean querying. Experiments conducted on 2 medium-sized bibliographic databases showed that the performance of lattice retrieval was comparable to or better than Boolean retrieval
  5. Hofferer, M.: Heuristic search in information retrieval (1994) 0.01
    0.007690453 = product of:
      0.053833168 = sum of:
        0.026916584 = weight(_text_:classification in 1070) [ClassicSimilarity], result of:
          0.026916584 = score(doc=1070,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.28149095 = fieldWeight in 1070, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0625 = fieldNorm(doc=1070)
        0.026916584 = weight(_text_:classification in 1070) [ClassicSimilarity], result of:
          0.026916584 = score(doc=1070,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.28149095 = fieldWeight in 1070, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0625 = fieldNorm(doc=1070)
      0.14285715 = coord(2/14)
    
    Abstract
    Describes an adaptive information retrieval system: Information Retrieval Algorithm System (IRAS); that uses heuristic searching to sample a document space and retrieve relevant documents according to users' requests; and also a learning module based on a knowledge representation system and an approximate probabilistic characterization of relevant documents; to reproduce a user classification of relevant documents and to provide a rule controlled ranking
  6. Savoy, J.; Ndarugendamwo, M.; Vrajitoru, D.: Report on the TREC-4 experiment : combining probabilistic and vector-space schemes (1996) 0.00
    0.004071223 = product of:
      0.05699712 = sum of:
        0.05699712 = product of:
          0.11399424 = sum of:
            0.11399424 = weight(_text_:schemes in 7574) [ClassicSimilarity], result of:
              0.11399424 = score(doc=7574,freq=2.0), product of:
                0.16067243 = queryWeight, product of:
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.03002521 = queryNorm
                0.7094823 = fieldWeight in 7574, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.09375 = fieldNorm(doc=7574)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
  7. Couvreur, T.R.; Benzel, R.N.; Miller, S.F.; Zeitler, D.N.; Lee, D.L.; Singhal, M.; Shivaratri, N.; Wong, W.Y.P.: ¬An analysis of performance and cost factors in searching large text databases using parallel search systems (1994) 0.00
    0.002513852 = product of:
      0.035193928 = sum of:
        0.035193928 = weight(_text_:bibliographic in 7657) [ClassicSimilarity], result of:
          0.035193928 = score(doc=7657,freq=2.0), product of:
            0.11688946 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.03002521 = queryNorm
            0.30108726 = fieldWeight in 7657, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.0546875 = fieldNorm(doc=7657)
      0.071428575 = coord(1/14)
    
    Abstract
    The results of modelling the performance of searching large text databases (>10 GBytes) via various parallel hardware architectures and search algorithms are discussed. The performance under load and the cost of each configuration are compared. Strengths, weaknesses, performance sensitivities, and search features supported for each configuration are also addressed. In addition, a common search workload used in the modelling is described. The search workload is derived from a set of searches run against the Chemical Abstracts file of bibliographic and abstract text available on STN International. This common workload is applied to all configurations modelled to provide a common basis of comparison
  8. Wong, S.K.M.; Yao, Y.Y.: Query formulation in linear retrieval models (1990) 0.00
    0.0024248946 = product of:
      0.033948522 = sum of:
        0.033948522 = weight(_text_:subject in 3571) [ClassicSimilarity], result of:
          0.033948522 = score(doc=3571,freq=2.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.31612942 = fieldWeight in 3571, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0625 = fieldNorm(doc=3571)
      0.071428575 = coord(1/14)
    
    Abstract
    The subject of query formulation is analysed within the framework of adaptive linear models. The study is based on the notions of user preference and an acceptable ranking strategy. A gradient descent algorithm is used to formulate the query vector by an inductive process. Presents a critical analysis of the existing relevance feedback and probabilistic approaches.
  9. Rada, R.; Barlow, J.; Potharst, J.; Zanstra, P.; Bijstra, D.: Document ranking using an enriched thesaurus (1991) 0.00
    0.0021547303 = product of:
      0.030166224 = sum of:
        0.030166224 = weight(_text_:bibliographic in 6626) [ClassicSimilarity], result of:
          0.030166224 = score(doc=6626,freq=2.0), product of:
            0.11688946 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.03002521 = queryNorm
            0.2580748 = fieldWeight in 6626, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.046875 = fieldNorm(doc=6626)
      0.071428575 = coord(1/14)
    
    Abstract
    A thesaurus may be viewed as a graph, and document retrieval algorithms can exploit this graph when both the documents and the query are represented by thesaurus terms. These retrieval algorithms measure the distance between the query and documents by using the path lengths in the graph. Previous work witj such strategies has shown that the hierarchical relations in the thesaurus are useful but the non-hierarchical are not. This paper shows that when the query explicitly mentions a particular non-hierarchical relation, the retrieval algorithm benefits from the presence of such relations in the thesaurus. Our algorithms were applied to the Excerpta Medica bibliographic citation database whose citations are indexed with terms from the EMTREE thesaurus. We also created an enriched EMTREE by systematically adding non-hierarchical relations from a medical knowledge base. Our algorithms used at one time EMTREE and, at another time, the enriched EMTREE in the course of ranking documents from Excerpta Medica against queries. When, and only when, the query specifically mentioned a particular non-hierarchical relation type, did EMTREE enriched with that relation type lead to a ranking that better corresponded to an expert's ranking
  10. Keen, M.: Query reformulation in ranked output interaction (1994) 0.00
    0.0021217826 = product of:
      0.029704956 = sum of:
        0.029704956 = weight(_text_:subject in 1065) [ClassicSimilarity], result of:
          0.029704956 = score(doc=1065,freq=2.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.27661324 = fieldWeight in 1065, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1065)
      0.071428575 = coord(1/14)
    
    Abstract
    Reports on a research project to evaluate and compare Boolean searching and methods of query reformulation using ranked output retrieval. Illustrates the design and operating features of the ranked output system, called ROSE (Ranked Output Search Engine), by means of typical results obtained by searching a database of 1239 records on the subject of cystic fibrosis. Concludes that further work is needed to determine the best reformulation tactics needed to harness the professional searcher's intelligence with that much more limited intelligence provided by the search software
  11. Liddy, E.D.: ¬An alternative representation for documents and queries (1993) 0.00
    0.0018186709 = product of:
      0.02546139 = sum of:
        0.02546139 = weight(_text_:subject in 7813) [ClassicSimilarity], result of:
          0.02546139 = score(doc=7813,freq=2.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.23709705 = fieldWeight in 7813, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.046875 = fieldNorm(doc=7813)
      0.071428575 = coord(1/14)
    
    Abstract
    Describes an alternative method of representation for documents and queries in information retrieval systems to the 2 most common methods: free text, natural language representation and controlled language representation. The alternative method combines the advantage of both traditional approaches and overcomes the difficulties associated with each. The scheme was developed for use with Longman's Dictionary of Contemporary English and uses a computerized version of the dictionary for the automatic generation of summary level semantic representations of each document and query. The system tags each word in a document with the appropriate Subject Field Code (SFC) from the dictionary and the SFCs are summed and normalized to produce a weighted, fixed length vector of the SFC. The search system matches the query SFC vector to the document SFC vectors in the database. The documents are then ranked on the basis of their vector's similarity to the query
  12. Keen, E.M.: Designing and testing an interactive ranked retrieval system for professional searchers (1994) 0.00
    0.0015155592 = product of:
      0.021217827 = sum of:
        0.021217827 = weight(_text_:subject in 1066) [ClassicSimilarity], result of:
          0.021217827 = score(doc=1066,freq=2.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.19758089 = fieldWeight in 1066, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1066)
      0.071428575 = coord(1/14)
    
    Abstract
    Reports 3 explorations of ranked system design. 2 tests used a 'cystic fibrosis' test collection with 100 queries. Experiment 1 compared a Boolean with a ranked interactive system using a subject qualified trained searcher, and reporting recall and precision results. Experiment 2 compared 15 different ranked match algorithms in a batch mode using 2 test collections, and included some new proximate pairs and term weighting approaches. Experiment 3 is a design plan for an interactive ranked prototype offering mid search algorithm choices plus other manual search devices (such as obligatory and unwanted terms), as influenced by thinking aloud comments from experiment 1. Concludes that, in Boolean versus ranked using inverse collection frequency, the searcher inspected more records on ranked than Boolean and so achieved a higher recall but lower precision; however, the presentation order of the relevant records, was, on average, very similar in both systems. Concludes also that: query reformulation was quite strongly practised in ranked searching but does not appear to have been effective; the term pairs proximate weithing methods in experiment 2 enhanced precision on both test collections when used with inverse collection frequency weighting (ICF); and the design plan for an interactive prototype adds to a selection of match algorithms other devices, such as obligatory and unwanted term marking, evidence for this being found from think aloud comments
  13. Chang, C.-H.; Hsu, C.-C.: Integrating query expansion and conceptual relevance feedback for personalized Web information retrieval (1998) 0.00
    0.0010170004 = product of:
      0.014238005 = sum of:
        0.014238005 = product of:
          0.02847601 = sum of:
            0.02847601 = weight(_text_:22 in 1319) [ClassicSimilarity], result of:
              0.02847601 = score(doc=1319,freq=2.0), product of:
                0.10514317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03002521 = queryNorm
                0.2708308 = fieldWeight in 1319, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1319)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Date
    1. 8.1996 22:08:06
  14. Joss, M.W.; Wszola, S.: ¬The engines that can : text search and retrieval software, their strategies, and vendors (1996) 0.00
    8.7171455E-4 = product of:
      0.0122040035 = sum of:
        0.0122040035 = product of:
          0.024408007 = sum of:
            0.024408007 = weight(_text_:22 in 5123) [ClassicSimilarity], result of:
              0.024408007 = score(doc=5123,freq=2.0), product of:
                0.10514317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03002521 = queryNorm
                0.23214069 = fieldWeight in 5123, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5123)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Date
    12. 9.1996 13:56:22
  15. Kelledy, F.; Smeaton, A.F.: Signature files and beyond (1996) 0.00
    8.7171455E-4 = product of:
      0.0122040035 = sum of:
        0.0122040035 = product of:
          0.024408007 = sum of:
            0.024408007 = weight(_text_:22 in 6973) [ClassicSimilarity], result of:
              0.024408007 = score(doc=6973,freq=2.0), product of:
                0.10514317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03002521 = queryNorm
                0.23214069 = fieldWeight in 6973, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=6973)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Source
    Information retrieval: new systems and current research. Proceedings of the 16th Research Colloquium of the British Computer Society Information Retrieval Specialist Group, Drymen, Scotland, 22-23 Mar 94. Ed.: R. Leon
  16. Burgin, R.: ¬The retrieval effectiveness of 5 clustering algorithms as a function of indexing exhaustivity (1995) 0.00
    7.264289E-4 = product of:
      0.010170003 = sum of:
        0.010170003 = product of:
          0.020340007 = sum of:
            0.020340007 = weight(_text_:22 in 3365) [ClassicSimilarity], result of:
              0.020340007 = score(doc=3365,freq=2.0), product of:
                0.10514317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03002521 = queryNorm
                0.19345059 = fieldWeight in 3365, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3365)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Date
    22. 2.1996 11:20:06
  17. Efthimiadis, E.N.: User choices : a new yardstick for the evaluation of ranking algorithms for interactive query expansion (1995) 0.00
    7.264289E-4 = product of:
      0.010170003 = sum of:
        0.010170003 = product of:
          0.020340007 = sum of:
            0.020340007 = weight(_text_:22 in 5697) [ClassicSimilarity], result of:
              0.020340007 = score(doc=5697,freq=2.0), product of:
                0.10514317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03002521 = queryNorm
                0.19345059 = fieldWeight in 5697, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5697)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Date
    22. 2.1996 13:14:10