Search (59 results, page 3 of 3)

  • × theme_ss:"Retrievalalgorithmen"
  • × type_ss:"a"
  • × year_i:[2010 TO 2020}
  1. Ayadi, H.; Torjmen-Khemakhem, M.; Daoud, M.; Xiangji Huang, J.; Ben Jemaa, M.: MF-Re-Rank : a modality feature-based re-ranking model for medical image retrieval (2018) 0.00
    0.0017899501 = product of:
      0.0035799001 = sum of:
        0.0035799001 = product of:
          0.0071598003 = sum of:
            0.0071598003 = weight(_text_:a in 4459) [ClassicSimilarity], result of:
              0.0071598003 = score(doc=4459,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13482209 = fieldWeight in 4459, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4459)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    One of the main challenges in medical image retrieval is the increasing volume of image data, which render it difficult for domain experts to find relevant information from large data sets. Effective and efficient medical image retrieval systems are required to better manage medical image information. Text-based image retrieval (TBIR) was very successful in retrieving images with textual descriptions. Several TBIR approaches rely on models based on bag-of-words approaches, in which the image retrieval problem turns into one of standard text-based information retrieval; where the meanings and values of specific medical entities in the text and metadata are ignored in the image representation and retrieval process. However, we believe that TBIR should extract specific medical entities and terms and then exploit these elements to achieve better image retrieval results. Therefore, we propose a novel reranking method based on medical-image-dependent features. These features are manually selected by a medical expert from imaging modalities and medical terminology. First, we represent queries and images using only medical-image-dependent features such as image modality and image scale. Second, we exploit the defined features in a new reranking method for medical image retrieval. Our motivation is the large influence of image modality in medical image retrieval and its impact on image-relevance scores. To evaluate our approach, we performed a series of experiments on the medical ImageCLEF data sets from 2009 to 2013. The BM25 model, a language model, and an image-relevance feedback model are used as baselines to evaluate our approach. The experimental results show that compared to the BM25 model, the proposed model significantly enhances image retrieval performance. We also compared our approach with other state-of-the-art approaches and show that our approach performs comparably to those of the top three runs in the official ImageCLEF competition.
    Type
    a
  2. Zhang, W.; Yoshida, T.; Tang, X.: ¬A comparative study of TF*IDF, LSI and multi-words for text classification (2011) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 1165) [ClassicSimilarity], result of:
              0.007030784 = score(doc=1165,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 1165, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1165)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    One of the main themes in text mining is text representation, which is fundamental and indispensable for text-based intellegent information processing. Generally, text representation inludes two tasks: indexing and weighting. This paper has comparatively studied TF*IDF, LSI and multi-word for text representation. We used a Chinese and an English document collection to respectively evaluate the three methods in information retreival and text categorization. Experimental results have demonstrated that in text categorization, LSI has better performance than other methods in both document collections. Also, LSI has produced the best performance in retrieving English documents. This outcome has shown that LSI has both favorable semantic and statistical quality and is different with the claim that LSI can not produce discriminative power for indexing.
    Type
    a
  3. Koumenides, C.L.; Shadbolt, N.R.: Ranking methods for entity-oriented semantic web search (2014) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 1280) [ClassicSimilarity], result of:
              0.007030784 = score(doc=1280,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 1280, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1280)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article provides a technical review of semantic search methods used to support text-based search over formal Semantic Web knowledge bases. Our focus is on ranking methods and auxiliary processes explored by existing semantic search systems, outlined within broad areas of classification. We present reflective examples from the literature in some detail, which should appeal to readers interested in a deeper perspective on the various methods and systems implemented in the outlined literature. The presentation covers graph exploration and propagation methods, adaptations of classic probabilistic retrieval models, and query-independent link analysis via flexible extensions to the PageRank algorithm. Future research directions are discussed, including development of more cohesive retrieval models to unlock further potentials and uses, data indexing schemes, integration with user interfaces, and building community consensus for more systematic evaluation and gradual development.
    Type
    a
  4. Fuhr, N.: Modelle im Information Retrieval (2013) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 724) [ClassicSimilarity], result of:
              0.006765375 = score(doc=724,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 724, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=724)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  5. Bar-Ilan, J.; Levene, M.: ¬The hw-rank : an h-index variant for ranking web pages (2015) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 1694) [ClassicSimilarity], result of:
              0.006765375 = score(doc=1694,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 1694, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1694)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  6. Ozdemiray, A.M.; Altingovde, I.S.: Explicit search result diversification using score and rank aggregation methods (2015) 0.00
    0.0014647468 = product of:
      0.0029294936 = sum of:
        0.0029294936 = product of:
          0.005858987 = sum of:
            0.005858987 = weight(_text_:a in 1856) [ClassicSimilarity], result of:
              0.005858987 = score(doc=1856,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.11032722 = fieldWeight in 1856, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1856)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Search result diversification is one of the key techniques to cope with the ambiguous and underspecified information needs of web users. In the last few years, strategies that are based on the explicit knowledge of query aspects emerged as highly effective ways of diversifying search results. Our contributions in this article are two-fold. First, we extensively evaluate the performance of a state-of-the-art explicit diversification strategy and pin-point its potential weaknesses. We propose basic yet novel optimizations to remedy these weaknesses and boost the performance of this algorithm. As a second contribution, inspired by the success of the current diversification strategies that exploit the relevance of the candidate documents to individual query aspects, we cast the diversification problem into the problem of ranking aggregation. To this end, we propose to materialize the re-rankings of the candidate documents for each query aspect and then merge these rankings by adapting the score(-based) and rank(-based) aggregation methods. Our extensive experimental evaluations show that certain ranking aggregation methods are superior to existing explicit diversification strategies in terms of diversification effectiveness. Furthermore, these ranking aggregation methods have lower computational complexity than the state-of-the-art diversification strategies.
    Type
    a
  7. Bhansali, D.; Desai, H.; Deulkar, K.: ¬A study of different ranking approaches for semantic search (2015) 0.00
    0.0014647468 = product of:
      0.0029294936 = sum of:
        0.0029294936 = product of:
          0.005858987 = sum of:
            0.005858987 = weight(_text_:a in 2696) [ClassicSimilarity], result of:
              0.005858987 = score(doc=2696,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.11032722 = fieldWeight in 2696, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2696)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Search Engines have become an integral part of our day to day life. Our reliance on search engines increases with every passing day. With the amount of data available on Internet increasing exponentially, it becomes important to develop new methods and tools that help to return results relevant to the queries and reduce the time spent on searching. The results should be diverse but at the same time should return results focused on the queries asked. Relation Based Page Rank [4] algorithms are considered to be the next frontier in improvement of Semantic Web Search. The probability of finding relevance in the search results as posited by the user while entering the query is used to measure the relevance. However, its application is limited by the complexity of determining relation between the terms and assigning explicit meaning to each term. Trust Rank is one of the most widely used ranking algorithms for semantic web search. Few other ranking algorithms like HITS algorithm, PageRank algorithm are also used for Semantic Web Searching. In this paper, we will provide a comparison of few ranking approaches.
    Type
    a
  8. Habernal, I.; Konopík, M.; Rohlík, O.: Question answering (2012) 0.00
    0.0014351527 = product of:
      0.0028703054 = sum of:
        0.0028703054 = product of:
          0.005740611 = sum of:
            0.005740611 = weight(_text_:a in 101) [ClassicSimilarity], result of:
              0.005740611 = score(doc=101,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10809815 = fieldWeight in 101, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=101)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Question Answering is an area of information retrieval with the added challenge of applying sophisticated techniques to identify the complex syntactic and semantic relationships present in text in order to provide a more sophisticated and satisfactory response to the user's information needs. For this reason, the authors see question answering as the next step beyond standard information retrieval. In this chapter state of the art question answering is covered focusing on providing an overview of systems, techniques and approaches that are likely to be employed in the next generations of search engines. Special attention is paid to question answering using the World Wide Web as the data source and to question answering exploiting the possibilities of Semantic Web. Considerations about the current issues and prospects for promising future research are also provided.
    Type
    a
  9. Jindal, V.; Bawa, S.; Batra, S.: ¬A review of ranking approaches for semantic search on Web (2014) 0.00
    0.0014351527 = product of:
      0.0028703054 = sum of:
        0.0028703054 = product of:
          0.005740611 = sum of:
            0.005740611 = weight(_text_:a in 2799) [ClassicSimilarity], result of:
              0.005740611 = score(doc=2799,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10809815 = fieldWeight in 2799, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2799)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  10. Behnert, C.; Borst, T.: Neue Formen der Relevanz-Sortierung in bibliothekarischen Informationssystemen : das DFG-Projekt LibRank (2015) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 5392) [ClassicSimilarity], result of:
              0.0054123 = score(doc=5392,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 5392, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5392)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  11. Tsai, C.-F.; Hu, Y.-H.; Chen, Z.-Y.: Factors affecting rocchio-based pseudorelevance feedback in image retrieval (2015) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 1607) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=1607,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 1607, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1607)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Pseudorelevance feedback (PRF) was proposed to solve the limitation of relevance feedback (RF), which is based on the user-in-the-loop process. In PRF, the top-k retrieved images are regarded as PRF. Although the PRF set contains noise, PRF has proven effective for automatically improving the overall retrieval result. To implement PRF, the Rocchio algorithm has been considered as a reasonable and well-established baseline. However, the performance of Rocchio-based PRF is subject to various representation choices (or factors). In this article, we examine these factors that affect the performance of Rocchio-based PRF, including image-feature representation, the number of top-ranked images, the weighting parameters of Rocchio, and similarity measure. We offer practical insights on how to optimize the performance of Rocchio-based PRF by choosing appropriate representation choices. Our extensive experiments on NUS-WIDE-LITE and Caltech 101 + Corel 5000 data sets show that the optimal feature representation is color moment + wavelet texture in terms of retrieval efficiency and effectiveness. Other representation choices are that using top-20 ranked images as pseudopositive and pseudonegative feedback sets with the equal weight (i.e., 0.5) by the correlation and cosine distance functions can produce the optimal retrieval result.
    Type
    a
  12. Xu, B.; Lin, H.; Lin, Y.: Assessment of learning to rank methods for query expansion (2016) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 2929) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=2929,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 2929, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2929)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Pseudo relevance feedback, as an effective query expansion method, can significantly improve information retrieval performance. However, the method may negatively impact the retrieval performance when some irrelevant terms are used in the expanded query. Therefore, it is necessary to refine the expansion terms. Learning to rank methods have proven effective in information retrieval to solve ranking problems by ranking the most relevant documents at the top of the returned list, but few attempts have been made to employ learning to rank methods for term refinement in pseudo relevance feedback. This article proposes a novel framework to explore the feasibility of using learning to rank to optimize pseudo relevance feedback by means of reranking the candidate expansion terms. We investigate some learning approaches to choose the candidate terms and introduce some state-of-the-art learning to rank methods to refine the expansion terms. In addition, we propose two term labeling strategies and examine the usefulness of various term features to optimize the framework. Experimental results with three TREC collections show that our framework can effectively improve retrieval performance.
    Type
    a
  13. Jacucci, G.; Barral, O.; Daee, P.; Wenzel, M.; Serim, B.; Ruotsalo, T.; Pluchino, P.; Freeman, J.; Gamberini, L.; Kaski, S.; Blankertz, B.: Integrating neurophysiologic relevance feedback in intent modeling for information retrieval (2019) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 5356) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=5356,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 5356, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5356)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The use of implicit relevance feedback from neurophysiology could deliver effortless information retrieval. However, both computing neurophysiologic responses and retrieving documents are characterized by uncertainty because of noisy signals and incomplete or inconsistent representations of the data. We present the first-of-its-kind, fully integrated information retrieval system that makes use of online implicit relevance feedback generated from brain activity as measured through electroencephalography (EEG), and eye movements. The findings of the evaluation experiment (N = 16) show that we are able to compute online neurophysiology-based relevance feedback with performance significantly better than chance in complex data domains and realistic search tasks. We contribute by demonstrating how to integrate in interactive intent modeling this inherently noisy implicit relevance feedback combined with scarce explicit feedback. Although experimental measures of task performance did not allow us to demonstrate how the classification outcomes translated into search task performance, the experiment proved that our approach is able to generate relevance feedback from brain signals and eye movements in a realistic scenario, thus providing promising implications for future work in neuroadaptive information retrieval (IR).
    Type
    a
  14. Hora, M.: Methoden für das Ranking in Discovery-Systemen (2018) 0.00
    0.0011839407 = product of:
      0.0023678814 = sum of:
        0.0023678814 = product of:
          0.0047357627 = sum of:
            0.0047357627 = weight(_text_:a in 4968) [ClassicSimilarity], result of:
              0.0047357627 = score(doc=4968,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.089176424 = fieldWeight in 4968, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4968)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  15. Behnert, C.; Plassmeier, K.; Borst, T.; Lewandowski, D.: Evaluierung von Rankingverfahren für bibliothekarische Informationssysteme (2019) 0.00
    0.0011839407 = product of:
      0.0023678814 = sum of:
        0.0023678814 = product of:
          0.0047357627 = sum of:
            0.0047357627 = weight(_text_:a in 5023) [ClassicSimilarity], result of:
              0.0047357627 = score(doc=5023,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.089176424 = fieldWeight in 5023, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5023)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  16. Bilal, D.: Ranking, relevance judgment, and precision of information retrieval on children's queries : evaluation of Google, Yahoo!, Bing, Yahoo! Kids, and ask Kids (2012) 0.00
    0.0011717974 = product of:
      0.0023435948 = sum of:
        0.0023435948 = product of:
          0.0046871896 = sum of:
            0.0046871896 = weight(_text_:a in 393) [ClassicSimilarity], result of:
              0.0046871896 = score(doc=393,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.088261776 = fieldWeight in 393, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=393)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This study employed benchmarking and intellectual relevance judgment in evaluating Google, Yahoo!, Bing, Yahoo! Kids, and Ask Kids on 30 queries that children formulated to find information for specific tasks. Retrieved hits on given queries were benchmarked to Google's and Yahoo! Kids' top-five ranked hits retrieved. Relevancy of hits was judged on a graded scale; precision was calculated using the precision-at-ten metric (P@10). Yahoo! and Bing produced a similar percentage in hit overlap with Google (nearly 30%), but differed in the ranking of hits. Ask Kids retrieved 11% in hit overlap with Google versus 3% by Yahoo! Kids. The engines retrieved 26 hits across query clusters that overlapped with Yahoo! Kids' top-five ranked hits. Precision (P) that the engines produced across the queries was P = 0.48 for relevant hits, and P = 0.28 for partially relevant hits. Precision by Ask Kids was P = 0.44 for relevant hits versus P = 0.21 by Yahoo! Kids. Bing produced the highest total precision (TP) of relevant hits (TP = 0.86) across the queries, and Yahoo! Kids yielded the lowest (TP = 0.47). Average precision (AP) of relevant hits was AP = 0.56 by leading engines versus AP = 0.29 by small engines. In contrast, average precision of partially relevant hits was AP = 0.83 by small engines versus AP = 0.33 by leading engines. Average precision of relevant hits across the engines was highest on two-word queries and lowest on one-word queries. Google performed best on natural language queries; Bing did the same (P = 0.69) on two-word queries. The findings have implications for search engine ranking algorithms, relevance theory, search engine design, research design, and information literacy.
    Type
    a
  17. Mayr, P.: Bradfordizing als Re-Ranking-Ansatz in Literaturinformationssystemen (2011) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 4292) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=4292,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 4292, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4292)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  18. Mayr, P.: Bradfordizing mit Katalogdaten : Alternative Sicht auf Suchergebnisse und Publikationsquellen durch Re-Ranking (2010) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 4301) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=4301,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 4301, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4301)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  19. Oberhauser, O.: Relevance Ranking in den Online-Katalogen der "nächsten Generation" (2010) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 4308) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=4308,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 4308, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4308)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a

Languages

  • e 50
  • d 9