Search (337 results, page 16 of 17)

  • × theme_ss:"Retrievalalgorithmen"
  • × type_ss:"a"
  1. Habernal, I.; Konopík, M.; Rohlík, O.: Question answering (2012) 0.00
    0.0014351527 = product of:
      0.0028703054 = sum of:
        0.0028703054 = product of:
          0.005740611 = sum of:
            0.005740611 = weight(_text_:a in 101) [ClassicSimilarity], result of:
              0.005740611 = score(doc=101,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10809815 = fieldWeight in 101, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=101)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Question Answering is an area of information retrieval with the added challenge of applying sophisticated techniques to identify the complex syntactic and semantic relationships present in text in order to provide a more sophisticated and satisfactory response to the user's information needs. For this reason, the authors see question answering as the next step beyond standard information retrieval. In this chapter state of the art question answering is covered focusing on providing an overview of systems, techniques and approaches that are likely to be employed in the next generations of search engines. Special attention is paid to question answering using the World Wide Web as the data source and to question answering exploiting the possibilities of Semantic Web. Considerations about the current issues and prospects for promising future research are also provided.
    Type
    a
  2. Jindal, V.; Bawa, S.; Batra, S.: ¬A review of ranking approaches for semantic search on Web (2014) 0.00
    0.0014351527 = product of:
      0.0028703054 = sum of:
        0.0028703054 = product of:
          0.005740611 = sum of:
            0.005740611 = weight(_text_:a in 2799) [ClassicSimilarity], result of:
              0.005740611 = score(doc=2799,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10809815 = fieldWeight in 2799, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2799)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  3. Qi, Q.; Hessen, D.J.; Heijden, P.G.M. van der: Improving information retrieval through correspondenceanalysis instead of latent semantic analysis (2023) 0.00
    0.0014351527 = product of:
      0.0028703054 = sum of:
        0.0028703054 = product of:
          0.005740611 = sum of:
            0.005740611 = weight(_text_:a in 1045) [ClassicSimilarity], result of:
              0.005740611 = score(doc=1045,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10809815 = fieldWeight in 1045, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1045)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The initial dimensions extracted by latent semantic analysis (LSA) of a document-term matrixhave been shown to mainly display marginal effects, which are irrelevant for informationretrieval. To improve the performance of LSA, usually the elements of the raw document-term matrix are weighted and the weighting exponent of singular values can be adjusted.An alternative information retrieval technique that ignores the marginal effects is correspon-dence analysis (CA). In this paper, the information retrieval performance of LSA and CA isempirically compared. Moreover, it is explored whether the two weightings also improve theperformance of CA. The results for four empirical datasets show that CA always performsbetter than LSA. Weighting the elements of the raw data matrix can improve CA; however,it is data dependent and the improvement is small. Adjusting the singular value weightingexponent often improves the performance of CA; however, the extent of the improvementdepends on the dataset and the number of dimensions. (PDF) Improving information retrieval through correspondence analysis instead of latent semantic analysis.
    Type
    a
  4. Fuhr, N.: Zur Überwindung der Diskrepanz zwischen Retrievalforschung und -praxis (1990) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 6625) [ClassicSimilarity], result of:
              0.0054123 = score(doc=6625,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 6625, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6625)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  5. Can, F.: Incremental clustering for dynamic information processing (1993) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 6627) [ClassicSimilarity], result of:
              0.0054123 = score(doc=6627,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 6627, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6627)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  6. Chang, R.: ¬The development of indexing technology (1993) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 7024) [ClassicSimilarity], result of:
              0.0054123 = score(doc=7024,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 7024, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=7024)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  7. Ojala, M.: Decisions, decisions, RANK decisions (1994) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 8226) [ClassicSimilarity], result of:
              0.0054123 = score(doc=8226,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 8226, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=8226)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  8. Wartik, S.: Boolean operators (1992) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 3509) [ClassicSimilarity], result of:
              0.0054123 = score(doc=3509,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 3509, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3509)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  9. Mandl, T.: Web- und Multimedia-Dokumente : Neuere Entwicklungen bei der Evaluierung von Information Retrieval Systemen (2003) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 1734) [ClassicSimilarity], result of:
              0.0054123 = score(doc=1734,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 1734, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1734)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  10. Stock, W.G.: On relevance distributions (2006) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 5116) [ClassicSimilarity], result of:
              0.0054123 = score(doc=5116,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 5116, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5116)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  11. Vechtomova, O.; Karamuftuoglu, M.: Lexical cohesion and term proximity in document ranking (2008) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 2101) [ClassicSimilarity], result of:
              0.0054123 = score(doc=2101,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 2101, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2101)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  12. Behnert, C.; Borst, T.: Neue Formen der Relevanz-Sortierung in bibliothekarischen Informationssystemen : das DFG-Projekt LibRank (2015) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 5392) [ClassicSimilarity], result of:
              0.0054123 = score(doc=5392,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 5392, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5392)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  13. Elsweiler, D.; Kruschwitz, U.: Interaktives Information Retrieval (2023) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 797) [ClassicSimilarity], result of:
              0.0054123 = score(doc=797,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 797, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=797)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  14. Crouch, C.J.; Crouch, D.B.; Chen, Q.; Holtz, S.J.: Improving the retrieval effectiveness of very short queries (2002) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 2572) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=2572,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 2572, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2572)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper describes an automatic approach designed to improve the retrieval effectiveness of very short queries such as those used in web searching. The method is based on the observation that stemming, which is designed to maximize recall, often results in depressed precision. Our approach is based on pseudo-feedback and attempts to increase the number of relevant documents in the pseudo-relevant set by reranking those documents based on the presence of unstemmed query terms in the document text. The original experiments underlying this work were carried out using Smart 11.0 and the lnc.ltc weighting scheme on three sets of documents from the TREC collection with corresponding TREC (title only) topics as queries. (The average length of these queries after stoplisting ranges from 2.4 to 4.5 terms.) Results, evaluated in terms of P@20 and non-interpolated average precision, showed clearly that pseudo-feedback (PF) based on this approach was effective in increasing the number of relevant documents in the top ranks. Subsequent experiments, performed on the same data sets using Smart 13.0 and the improved Lnu.ltu weighting scheme, indicate that these results hold up even over the much higher baseline provided by the new weights. Query drift analysis presents a more detailed picture of the improvements produced by this process.
    Type
    a
  15. Lanvent, A.: Know-how - Suchverfahren : Intelligente Suchmaschinen erzielen mit assoziativen und linguistischen Verfahren beste Ergebnisse. (2004) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 2988) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=2988,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 2988, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2988)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  16. Lanvent, A.: Praxis - Windows-Suche und Indexdienst : Auch Windows kann bei der Suche den Turbo einlegen: mit dem Indexdienst (2004) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 3316) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=3316,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 3316, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3316)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  17. Tsai, C.-F.; Hu, Y.-H.; Chen, Z.-Y.: Factors affecting rocchio-based pseudorelevance feedback in image retrieval (2015) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 1607) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=1607,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 1607, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1607)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Pseudorelevance feedback (PRF) was proposed to solve the limitation of relevance feedback (RF), which is based on the user-in-the-loop process. In PRF, the top-k retrieved images are regarded as PRF. Although the PRF set contains noise, PRF has proven effective for automatically improving the overall retrieval result. To implement PRF, the Rocchio algorithm has been considered as a reasonable and well-established baseline. However, the performance of Rocchio-based PRF is subject to various representation choices (or factors). In this article, we examine these factors that affect the performance of Rocchio-based PRF, including image-feature representation, the number of top-ranked images, the weighting parameters of Rocchio, and similarity measure. We offer practical insights on how to optimize the performance of Rocchio-based PRF by choosing appropriate representation choices. Our extensive experiments on NUS-WIDE-LITE and Caltech 101 + Corel 5000 data sets show that the optimal feature representation is color moment + wavelet texture in terms of retrieval efficiency and effectiveness. Other representation choices are that using top-20 ranked images as pseudopositive and pseudonegative feedback sets with the equal weight (i.e., 0.5) by the correlation and cosine distance functions can produce the optimal retrieval result.
    Type
    a
  18. Xu, B.; Lin, H.; Lin, Y.: Assessment of learning to rank methods for query expansion (2016) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 2929) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=2929,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 2929, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2929)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Pseudo relevance feedback, as an effective query expansion method, can significantly improve information retrieval performance. However, the method may negatively impact the retrieval performance when some irrelevant terms are used in the expanded query. Therefore, it is necessary to refine the expansion terms. Learning to rank methods have proven effective in information retrieval to solve ranking problems by ranking the most relevant documents at the top of the returned list, but few attempts have been made to employ learning to rank methods for term refinement in pseudo relevance feedback. This article proposes a novel framework to explore the feasibility of using learning to rank to optimize pseudo relevance feedback by means of reranking the candidate expansion terms. We investigate some learning approaches to choose the candidate terms and introduce some state-of-the-art learning to rank methods to refine the expansion terms. In addition, we propose two term labeling strategies and examine the usefulness of various term features to optimize the framework. Experimental results with three TREC collections show that our framework can effectively improve retrieval performance.
    Type
    a
  19. Jacucci, G.; Barral, O.; Daee, P.; Wenzel, M.; Serim, B.; Ruotsalo, T.; Pluchino, P.; Freeman, J.; Gamberini, L.; Kaski, S.; Blankertz, B.: Integrating neurophysiologic relevance feedback in intent modeling for information retrieval (2019) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 5356) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=5356,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 5356, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5356)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The use of implicit relevance feedback from neurophysiology could deliver effortless information retrieval. However, both computing neurophysiologic responses and retrieving documents are characterized by uncertainty because of noisy signals and incomplete or inconsistent representations of the data. We present the first-of-its-kind, fully integrated information retrieval system that makes use of online implicit relevance feedback generated from brain activity as measured through electroencephalography (EEG), and eye movements. The findings of the evaluation experiment (N = 16) show that we are able to compute online neurophysiology-based relevance feedback with performance significantly better than chance in complex data domains and realistic search tasks. We contribute by demonstrating how to integrate in interactive intent modeling this inherently noisy implicit relevance feedback combined with scarce explicit feedback. Although experimental measures of task performance did not allow us to demonstrate how the classification outcomes translated into search task performance, the experiment proved that our approach is able to generate relevance feedback from brain signals and eye movements in a realistic scenario, thus providing promising implications for future work in neuroadaptive information retrieval (IR).
    Type
    a
  20. Srinivasan, P.: Intelligent information retrieval using rough set approximations (1989) 0.00
    0.0011839407 = product of:
      0.0023678814 = sum of:
        0.0023678814 = product of:
          0.0047357627 = sum of:
            0.0047357627 = weight(_text_:a in 2526) [ClassicSimilarity], result of:
              0.0047357627 = score(doc=2526,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.089176424 = fieldWeight in 2526, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2526)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a

Languages