Search (113 results, page 2 of 6)

  • × theme_ss:"Retrievalalgorithmen"
  • × type_ss:"a"
  1. Henzinger, M.R.: Link analysis in Web information retrieval (2000) 0.00
    0.0042586806 = product of:
      0.042586807 = sum of:
        0.042586807 = weight(_text_:web in 801) [ClassicSimilarity], result of:
          0.042586807 = score(doc=801,freq=20.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.45608947 = fieldWeight in 801, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=801)
      0.1 = coord(1/10)
    
    Abstract
    The analysis of the hyperlink structure of the web has led to significant improvements in web information retrieval. This survey describes two successful link analysis algorithms and the state-of-the art of the field.
    Content
    The goal of information retrieval is to find all documents relevant for a user query in a collection of documents. Decades of research in information retrieval were successful in developing and refining techniques that are solely word-based (see e.g., [2]). With the advent of the web new sources of information became available, one of them being the hyperlinks between documents and records of user behavior. To be precise, hypertexts (i.e., collections of documents connected by hyperlinks) have existed and have been studied for a long time. What was new was the large number of hyperlinks created by independent individuals. Hyperlinks provide a valuable source of information for web information retrieval as we will show in this article. This area of information retrieval is commonly called link analysis. Why would one expect hyperlinks to be useful? Ahyperlink is a reference of a web page B that is contained in a web page A. When the hyperlink is clicked on in a web browser, the browser displays page B. This functionality alone is not helpful for web information retrieval. However, the way hyperlinks are typically used by authors of web pages can give them valuable information content. Typically, authors create links because they think they will be useful for the readers of the pages. Thus, links are usually either navigational aids that, for example, bring the reader back to the homepage of the site, or links that point to pages whose content augments the content of the current page. The second kind of links tend to point to high-quality pages that might be on the same topic as the page containing the link.
  2. Jascó, P.: Mapping algorithms to translate natural language questions into search queries for Web databases (1997) 0.00
    0.004040139 = product of:
      0.040401388 = sum of:
        0.040401388 = weight(_text_:web in 314) [ClassicSimilarity], result of:
          0.040401388 = score(doc=314,freq=2.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.43268442 = fieldWeight in 314, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.09375 = fieldNorm(doc=314)
      0.1 = coord(1/10)
    
  3. Dominich, S.; Skrop, A.: PageRank and interaction information retrieval (2005) 0.00
    0.004040139 = product of:
      0.040401388 = sum of:
        0.040401388 = weight(_text_:web in 3268) [ClassicSimilarity], result of:
          0.040401388 = score(doc=3268,freq=8.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.43268442 = fieldWeight in 3268, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3268)
      0.1 = coord(1/10)
    
    Abstract
    The PageRank method is used by the Google Web search engine to compute the importance of Web pages. Two different views have been developed for the Interpretation of the PageRank method and values: (a) stochastic (random surfer): the PageRank values can be conceived as the steady-state distribution of a Markov chain, and (b) algebraic: the PageRank values form the eigenvector corresponding to eigenvalue 1 of the Web link matrix. The Interaction Information Retrieval (1**2 R) method is a nonclassical information retrieval paradigm, which represents a connectionist approach based an dynamic systems. In the present paper, a different Interpretation of PageRank is proposed, namely, a dynamic systems viewpoint, by showing that the PageRank method can be formally interpreted as a particular case of the Interaction Information Retrieval method; and thus, the PageRank values may be interpreted as neutral equilibrium points of the Web.
  4. Stock, M.; Stock, W.G.: Internet-Suchwerkzeuge im Vergleich (IV) : Relevance Ranking nach "Popularität" von Webseiten: Google (2001) 0.00
    0.0034988632 = product of:
      0.03498863 = sum of:
        0.03498863 = weight(_text_:web in 5771) [ClassicSimilarity], result of:
          0.03498863 = score(doc=5771,freq=6.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.37471575 = fieldWeight in 5771, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=5771)
      0.1 = coord(1/10)
    
    Abstract
    In unserem Retrievaltest von Suchwerkzeugen im World Wide Web (Password 11/2000) schnitt die Suchmaschine Google am besten ab. Im Vergleich zu anderen Search Engines setzt Google kaum auf Informationslinguistik, sondern auf Algorithmen, die sich aus den Besonderheiten der Web-Dokumente ableiten lassen. Kernstück der informationsstatistischen Technik ist das "PageRank"- Verfahren (benannt nach dem Entwickler Larry Page), das aus der Hypertextstruktur des Web die "Popularität" von Seiten anhand ihrer ein- und ausgehenden Links berechnet. Google besticht durch das Angebot intuitiv verstehbarer Suchbildschirme sowie durch einige sehr nützliche "Kleinigkeiten" wie die Angabe des Rangs einer Seite, Highlighting, Suchen in der Seite, Suchen innerhalb eines Suchergebnisses usw., alles verstaut in einer eigenen Befehlsleiste innerhalb des Browsers. Ähnlich wie RealNames bietet Google mit dem Produkt "AdWords" den Aufkauf von Suchtermen an. Nach einer Reihe von nunmehr vier Password-Artikeln über InternetSuchwerkzeugen im Vergleich wollen wir abschließend zu einer Bewertung kommen. Wie ist der Stand der Technik bei Directories und Search Engines aus informationswissenschaftlicher Sicht einzuschätzen? Werden die "typischen" Internetnutzer, die ja in der Regel keine Information Professionals sind, adäquat bedient? Und können auch Informationsfachleute von den Suchwerkzeugen profitieren?
  5. Radev, D.; Fan, W.; Qu, H.; Wu, H.; Grewal, A.: Probabilistic question answering on the Web (2005) 0.00
    0.0034988632 = product of:
      0.03498863 = sum of:
        0.03498863 = weight(_text_:web in 3455) [ClassicSimilarity], result of:
          0.03498863 = score(doc=3455,freq=6.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.37471575 = fieldWeight in 3455, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3455)
      0.1 = coord(1/10)
    
    Abstract
    Web-based search engines such as Google and NorthernLight return documents that are relevant to a user query, not answers to user questions. We have developed an architecture that augments existing search engines so that they support natural language question answering. The process entails five steps: query modulation, document retrieval, passage extraction, phrase extraction, and answer ranking. In this article, we describe some probabilistic approaches to the last three of these stages. We show how our techniques apply to a number of existing search engines, and we also present results contrasting three different methods for question answering. Our algorithm, probabilistic phrase reranking (PPR), uses proximity and question type features and achieves a total reciprocal document rank of .20 an the TREC8 corpus. Our techniques have been implemented as a Web-accessible system, called NSIR.
  6. Fu, X.: Towards a model of implicit feedback for Web search (2010) 0.00
    0.0034988632 = product of:
      0.03498863 = sum of:
        0.03498863 = weight(_text_:web in 3310) [ClassicSimilarity], result of:
          0.03498863 = score(doc=3310,freq=6.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.37471575 = fieldWeight in 3310, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3310)
      0.1 = coord(1/10)
    
    Abstract
    This research investigated several important issues in using implicit feedback techniques to assist searchers with difficulties in formulating effective search strategies. It focused on examining the relationship between types of behavioral evidence that can be captured from Web searches and searchers' interests. A carefully crafted observation study was conducted to capture, examine, and elucidate the analytical processes and work practices of human analysts when they simulated the role of an implicit feedback system by trying to infer searchers' interests from behavioral traces. Findings provided rare insight into the complexities and nuances in using behavioral evidence for implicit feedback and led to the proposal of an implicit feedback model for Web search that bridged previous studies on behavioral evidence and implicit feedback measures. A new level of analysis termed an analytical lens emerged from the data and provides a road map for future research on this topic.
  7. Moura, E.S. de; Fernandes, D.; Ribeiro-Neto, B.; Silva, A.S. da; Gonçalves, M.A.: Using structural information to improve search in Web collections (2010) 0.00
    0.0034988632 = product of:
      0.03498863 = sum of:
        0.03498863 = weight(_text_:web in 4119) [ClassicSimilarity], result of:
          0.03498863 = score(doc=4119,freq=6.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.37471575 = fieldWeight in 4119, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4119)
      0.1 = coord(1/10)
    
    Abstract
    In this work, we investigate the problem of using the block structure of Web pages to improve ranking results. Starting with basic intuitions provided by the concepts of term frequency (TF) and inverse document frequency (IDF), we propose nine block-weight functions to distinguish the impact of term occurrences inside page blocks, instead of inside whole pages. These are then used to compute a modified BM25 ranking function. Using four distinct Web collections, we ran extensive experiments to compare our block-weight ranking formulas with two other baselines: (a) a BM25 ranking applied to full pages, and (b) a BM25 ranking that takes into account best blocks. Our methods suggest that our block-weighting ranking method is superior to all baselines across all collections we used and that average gain in precision figures from 5 to 20% are generated.
  8. Courtois, M.P.; Berry, M.W.: Results ranking in Web search engines (1999) 0.00
    0.0033667826 = product of:
      0.033667825 = sum of:
        0.033667825 = weight(_text_:web in 3726) [ClassicSimilarity], result of:
          0.033667825 = score(doc=3726,freq=2.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.36057037 = fieldWeight in 3726, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.078125 = fieldNorm(doc=3726)
      0.1 = coord(1/10)
    
  9. Chen, H.; Lally, A.M.; Zhu, B.; Chau, M.: HelpfulMed : Intelligent searching for medical information over the Internet (2003) 0.00
    0.0033667826 = product of:
      0.033667825 = sum of:
        0.033667825 = weight(_text_:web in 1615) [ClassicSimilarity], result of:
          0.033667825 = score(doc=1615,freq=8.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.36057037 = fieldWeight in 1615, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1615)
      0.1 = coord(1/10)
    
    Abstract
    The Medical professionals and researchers need information from reputable sources to accomplish their work. Unfortunately, the Web has a large number of documents that are irrelevant to their work, even those documents that purport to be "medically-related." This paper describes an architecture designed to integrate advanced searching and indexing algorithms, an automatic thesaurus, or "concept space," and Kohonen-based Self-Organizing Map (SOM) technologies to provide searchers with finegrained results. Initial results indicate that these systems provide complementary retrieval functionalities. HelpfulMed not only allows users to search Web pages and other online databases, but also allows them to build searches through the use of an automatic thesaurus and browse a graphical display of medical-related topics. Evaluation results for each of the different components are included. Our spidering algorithm outperformed both breadth-first search and PageRank spiders an a test collection of 100,000 Web pages. The automatically generated thesaurus performed as well as both MeSH and UMLS-systems which require human mediation for currency. Lastly, a variant of the Kohonen SOM was comparable to MeSH terms in perceived cluster precision and significantly better at perceived cluster recall.
    Footnote
    Teil eines Themenheftes: "Web retrieval and mining: A machine learning perspective"
  10. Bar-Ilan, J.; Levene, M.: ¬The hw-rank : an h-index variant for ranking web pages (2015) 0.00
    0.0033667826 = product of:
      0.033667825 = sum of:
        0.033667825 = weight(_text_:web in 1694) [ClassicSimilarity], result of:
          0.033667825 = score(doc=1694,freq=2.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.36057037 = fieldWeight in 1694, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.078125 = fieldNorm(doc=1694)
      0.1 = coord(1/10)
    
  11. Ning, X.; Jin, H.; Jia, W.; Yuan, P.: Practical and effective IR-style keyword search over semantic web (2009) 0.00
    0.0033329446 = product of:
      0.033329446 = sum of:
        0.033329446 = weight(_text_:web in 4213) [ClassicSimilarity], result of:
          0.033329446 = score(doc=4213,freq=4.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.35694647 = fieldWeight in 4213, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4213)
      0.1 = coord(1/10)
    
    Abstract
    This paper presents a novel IR-style keyword search model for semantic web data retrieval, distinguished from current retrieval methods. In this model, an answer to a keyword query is a connected subgraph that contains all the query keywords. In addition, the answer is minimal because any proper subgraph can not be an answer to the query. We provide an approximation algorithm to retrieve these answers efficiently. A special ranking strategy is also proposed so that answers can be appropriately ordered. The experimental results over real datasets show that our model outperforms existing possible solutions with respect to effectiveness and efficiency.
  12. Kang, I.-H.; Kim, G.C.: Integration of multiple evidences based on a query type for web search (2004) 0.00
    0.0029157193 = product of:
      0.029157192 = sum of:
        0.029157192 = weight(_text_:web in 2568) [ClassicSimilarity], result of:
          0.029157192 = score(doc=2568,freq=6.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.3122631 = fieldWeight in 2568, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2568)
      0.1 = coord(1/10)
    
    Abstract
    The massive and heterogeneous Web exacerbates IR problems and short user queries make them worse. The contents of web pages are not enough to find answer pages. PageRank compensates for the insufficiencies of content information. The content information and PageRank are combined to get better results. However, static combination of multiple evidences may lower the retrieval performance. We have to use different strategies to meet the need of a user. We can classify user queries as three categories according to users' intent, the topic relevance task, the homepage finding task, and the service finding task. In this paper, we present a user query classification method. The difference of distribution, mutual information, the usage rate as anchor texts and the POS information are used for the classification. After we classified a user query, we apply different algorithms and information for the better results. For the topic relevance task, we emphasize the content information, on the other hand, for the homepage finding task, we emphasize the Link information and the URL information. We could get the best performance when our proposed classification method with the OKAPI scoring algorithm was used.
  13. Bhansali, D.; Desai, H.; Deulkar, K.: ¬A study of different ranking approaches for semantic search (2015) 0.00
    0.0029157193 = product of:
      0.029157192 = sum of:
        0.029157192 = weight(_text_:web in 2696) [ClassicSimilarity], result of:
          0.029157192 = score(doc=2696,freq=6.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.3122631 = fieldWeight in 2696, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2696)
      0.1 = coord(1/10)
    
    Abstract
    Search Engines have become an integral part of our day to day life. Our reliance on search engines increases with every passing day. With the amount of data available on Internet increasing exponentially, it becomes important to develop new methods and tools that help to return results relevant to the queries and reduce the time spent on searching. The results should be diverse but at the same time should return results focused on the queries asked. Relation Based Page Rank [4] algorithms are considered to be the next frontier in improvement of Semantic Web Search. The probability of finding relevance in the search results as posited by the user while entering the query is used to measure the relevance. However, its application is limited by the complexity of determining relation between the terms and assigning explicit meaning to each term. Trust Rank is one of the most widely used ranking algorithms for semantic web search. Few other ranking algorithms like HITS algorithm, PageRank algorithm are also used for Semantic Web Searching. In this paper, we will provide a comparison of few ranking approaches.
  14. Jacso, P.: Testing the calculation of a realistic h-index in Google Scholar, Scopus, and Web of Science for F. W. Lancaster (2008) 0.00
    0.0029157193 = product of:
      0.029157192 = sum of:
        0.029157192 = weight(_text_:web in 5586) [ClassicSimilarity], result of:
          0.029157192 = score(doc=5586,freq=6.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.3122631 = fieldWeight in 5586, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5586)
      0.1 = coord(1/10)
    
    Abstract
    This paper focuses on the practical limitations in the content and software of the databases that are used to calculate the h-index for assessing the publishing productivity and impact of researchers. To celebrate F. W. Lancaster's biological age of seventy-five, and "scientific age" of forty-five, this paper discusses the related features of Google Scholar, Scopus, and Web of Science (WoS), and demonstrates in the latter how a much more realistic and fair h-index can be computed for F. W. Lancaster than the one produced automatically. Browsing and searching the cited reference index of the 1945-2007 edition of WoS, which in my estimate has over a hundred million "orphan references" that have no counterpart master records to be attached to, and "stray references" that cite papers which do have master records but cannot be identified by the matching algorithm because of errors of omission and commission in the references of the citing works, can bring up hundreds of additional cited references given to works of an accomplished author but are ignored in the automatic process of calculating the h-index. The partially manual process doubled the h-index value for F. W. Lancaster from 13 to 26, which is a much more realistic value for an information scientist and professor of his stature.
    Object
    Web of Science
  15. Ding, Y.; Chowdhury, G.; Foo, S.: Organsising keywords in a Web search environment : a methodology based on co-word analysis (2000) 0.00
    0.0028568096 = product of:
      0.028568096 = sum of:
        0.028568096 = weight(_text_:web in 105) [ClassicSimilarity], result of:
          0.028568096 = score(doc=105,freq=4.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.3059541 = fieldWeight in 105, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=105)
      0.1 = coord(1/10)
    
    Abstract
    The rapid development of the Internet and World Wide Web has caused some critical problem for information retrieval. Researchers have made several attempts to solve these problems. Thesauri and subject heading lists as traditional information retrieval tools have been criticised for their efficiency to tackle these newly emerging problems. This paper proposes an information retrieval tool generated by cocitation analysis, comprising keyword clusters with relationships based on the co-occurrences of keywords in the literature. Such a tool can play the role of an associative thesaurus that can provide information about the keywords in a domain that might be useful for information searching and query expansion
  16. Habernal, I.; Konopík, M.; Rohlík, O.: Question answering (2012) 0.00
    0.0028568096 = product of:
      0.028568096 = sum of:
        0.028568096 = weight(_text_:web in 101) [ClassicSimilarity], result of:
          0.028568096 = score(doc=101,freq=4.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.3059541 = fieldWeight in 101, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=101)
      0.1 = coord(1/10)
    
    Abstract
    Question Answering is an area of information retrieval with the added challenge of applying sophisticated techniques to identify the complex syntactic and semantic relationships present in text in order to provide a more sophisticated and satisfactory response to the user's information needs. For this reason, the authors see question answering as the next step beyond standard information retrieval. In this chapter state of the art question answering is covered focusing on providing an overview of systems, techniques and approaches that are likely to be employed in the next generations of search engines. Special attention is paid to question answering using the World Wide Web as the data source and to question answering exploiting the possibilities of Semantic Web. Considerations about the current issues and prospects for promising future research are also provided.
  17. Koumenides, C.L.; Shadbolt, N.R.: Ranking methods for entity-oriented semantic web search (2014) 0.00
    0.0028568096 = product of:
      0.028568096 = sum of:
        0.028568096 = weight(_text_:web in 1280) [ClassicSimilarity], result of:
          0.028568096 = score(doc=1280,freq=4.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.3059541 = fieldWeight in 1280, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=1280)
      0.1 = coord(1/10)
    
    Abstract
    This article provides a technical review of semantic search methods used to support text-based search over formal Semantic Web knowledge bases. Our focus is on ranking methods and auxiliary processes explored by existing semantic search systems, outlined within broad areas of classification. We present reflective examples from the literature in some detail, which should appeal to readers interested in a deeper perspective on the various methods and systems implemented in the outlined literature. The presentation covers graph exploration and propagation methods, adaptations of classic probabilistic retrieval models, and query-independent link analysis via flexible extensions to the PageRank algorithm. Future research directions are discussed, including development of more cohesive retrieval models to unlock further potentials and uses, data indexing schemes, integration with user interfaces, and building community consensus for more systematic evaluation and gradual development.
  18. Jindal, V.; Bawa, S.; Batra, S.: ¬A review of ranking approaches for semantic search on Web (2014) 0.00
    0.0028568096 = product of:
      0.028568096 = sum of:
        0.028568096 = weight(_text_:web in 2799) [ClassicSimilarity], result of:
          0.028568096 = score(doc=2799,freq=4.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.3059541 = fieldWeight in 2799, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2799)
      0.1 = coord(1/10)
    
    Abstract
    With ever increasing information being available to the end users, search engines have become the most powerful tools for obtaining useful information scattered on the Web. However, it is very common that even most renowned search engines return result sets with not so useful pages to the user. Research on semantic search aims to improve traditional information search and retrieval methods where the basic relevance criteria rely primarily on the presence of query keywords within the returned pages. This work is an attempt to explore different relevancy ranking approaches based on semantics which are considered appropriate for the retrieval of relevant information. In this paper, various pilot projects and their corresponding outcomes have been investigated based on methodologies adopted and their most distinctive characteristics towards ranking. An overview of selected approaches and their comparison by means of the classification criteria has been presented. With the help of this comparison, some common concepts and outstanding features have been identified.
  19. Mandl, T.: Web- und Multimedia-Dokumente : Neuere Entwicklungen bei der Evaluierung von Information Retrieval Systemen (2003) 0.00
    0.0026934259 = product of:
      0.026934259 = sum of:
        0.026934259 = weight(_text_:web in 1734) [ClassicSimilarity], result of:
          0.026934259 = score(doc=1734,freq=2.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.2884563 = fieldWeight in 1734, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=1734)
      0.1 = coord(1/10)
    
  20. Stock, W.G.: On relevance distributions (2006) 0.00
    0.0026934259 = product of:
      0.026934259 = sum of:
        0.026934259 = weight(_text_:web in 5116) [ClassicSimilarity], result of:
          0.026934259 = score(doc=5116,freq=2.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.2884563 = fieldWeight in 5116, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=5116)
      0.1 = coord(1/10)
    
    Abstract
    There are at least three possible ways that documents are distributed by relevance: informetric (power law), inverse logistic, and dichotomous. The nature of the type of distribution has implications for the construction of relevance ranking algorithms for search engines, for automated (blind) relevance feedback, for user behavior when using Web search engines, for combining of outputs of search engines for metasearch, for topic detection and tracking, and for the methodology of evaluation of information retrieval systems.

Years

Languages

  • e 100
  • d 12
  • pt 1
  • More… Less…