Search (2 results, page 1 of 1)

  • × theme_ss:"Retrievalalgorithmen"
  • × type_ss:"x"
  1. Marcus, S.: Textvergleich mit mehreren Mustern (2005) 0.02
    0.018147638 = product of:
      0.036295276 = sum of:
        0.036295276 = product of:
          0.07259055 = sum of:
            0.07259055 = weight(_text_:daten in 862) [ClassicSimilarity], result of:
              0.07259055 = score(doc=862,freq=4.0), product of:
                0.24402376 = queryWeight, product of:
                  4.759573 = idf(docFreq=1029, maxDocs=44218)
                  0.051270094 = queryNorm
                0.2974733 = fieldWeight in 862, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.759573 = idf(docFreq=1029, maxDocs=44218)
                  0.03125 = fieldNorm(doc=862)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Das Gebiet des Pattern-Matching besitzt in vielen wissenschaftlichen Bereichen eine hohe Relevanz. Aufgrund unterschiedlicher Einsatzgebiete sind auch Umsetzung und Anwendung des Pattern-Matching sehr verschieden. Die allen Anwendungen des Pattern-Matching inhärente Aufgabe besteht darin, in einer Vielzahl von Eingabedaten bestimmte Muster wieder zu erkennen. Dies ist auch der deutschen Bezeichnung Mustererkennung zu entnehmen. In der Medizin findet Pattern-Matching zum Beispiel bei der Untersuchung von Chromosomensträngen auf bestimmte Folgen von Chromosomen Verwendung. Auf dem Gebiet der Bildverarbeitung können mit Hilfe des Pattern-Matching ganze Bilder verglichen oder einzelne Bildpunkte betrachtet werden, die durch ein Muster identifizierbar sind. Ein weiteres Einsatzgebiet des Pattern-Matching ist das Information-Retrieval, bei dem in gespeicherten Daten nach relevanten Informationen gesucht wird. Die Relevanz der zu suchenden Daten wird auch hier anhand eines Musters, zum Beispiel einem bestimmten Schlagwort, beurteilt. Ein vergleichbares Verfahren findet auch im Internet Anwendung. Internet-Benutzer, die mittels einer Suchmaschine nach bedeutsamen Informationen suchen, erhalten diese durch den Einsatz eines Pattern-Matching-Automaten. Die in diesem Zusammenhang an den Pattern-Matching-Automaten gestellten Anforderungen variieren mit der Suchanfrage, die an eine Suchmaschine gestellt wird. Eine solche Suchanfrage kann im einfachsten Fall aus genau einem Schlüsselwort bestehen. Im komplexeren Fall enthält die Anfrage mehrere Schlüsselwörter. Dabei muss für eine erfolgreiche Suche eine Konkatenation der in der Anfrage enthaltenen Wörter erfolgen. Zu Beginn dieser Arbeit wird in Kapitel 2 eine umfassende Einführung in die Thematik des Textvergleichs gegeben, wobei die Definition einiger grundlegender Begriffe vorgenommen wird. Anschließend werden in Kapitel 3 Verfahren zum Textvergleich mit mehreren Mustern vorgestellt. Dabei wird zunächst ein einfaches Vorgehen erläutert, um einen Einsteig in das Thema des Textvergleichs mit mehreren Mustern zu erleichtern. Danach wird eine komplexe Methode des Textvergleichs vorgestellt und anhand von Beispielen verdeutlicht.
  2. Mayr, P.: Re-Ranking auf Basis von Bradfordizing für die verteilte Suche in Digitalen Bibliotheken (2009) 0.01
    0.0128323175 = product of:
      0.025664635 = sum of:
        0.025664635 = product of:
          0.05132927 = sum of:
            0.05132927 = weight(_text_:daten in 4302) [ClassicSimilarity], result of:
              0.05132927 = score(doc=4302,freq=2.0), product of:
                0.24402376 = queryWeight, product of:
                  4.759573 = idf(docFreq=1029, maxDocs=44218)
                  0.051270094 = queryNorm
                0.21034539 = fieldWeight in 4302, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.759573 = idf(docFreq=1029, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4302)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Trotz großer Dokumentmengen für datenbankübergreifende Literaturrecherchen erwarten akademische Nutzer einen möglichst hohen Anteil an relevanten und qualitativen Dokumenten in den Trefferergebnissen. Insbesondere die Reihenfolge und Struktur der gelisteten Ergebnisse (Ranking) spielt, neben dem direkten Volltextzugriff auf die Dokumente, inzwischen eine entscheidende Rolle beim Design von Suchsystemen. Nutzer erwarten weiterhin flexible Informationssysteme, die es unter anderem zulassen, Einfluss auf das Ranking der Dokumente zu nehmen bzw. alternative Rankingverfahren zu verwenden. In dieser Arbeit werden zwei Mehrwertverfahren für Suchsysteme vorgestellt, die die typischen Probleme bei der Recherche nach wissenschaftlicher Literatur behandeln und damit die Recherchesituation messbar verbessern können. Die beiden Mehrwertdienste semantische Heterogenitätsbehandlung am Beispiel Crosskonkordanzen und Re-Ranking auf Basis von Bradfordizing, die in unterschiedlichen Phasen der Suche zum Einsatz kommen, werden hier ausführlich beschrieben und im empirischen Teil der Arbeit bzgl. der Effektivität für typische fachbezogene Recherchen evaluiert. Vorrangiges Ziel der Promotion ist es, zu untersuchen, ob das hier vorgestellte alternative Re-Rankingverfahren Bradfordizing im Anwendungsbereich bibliographischer Datenbanken zum einen operabel ist und zum anderen voraussichtlich gewinnbringend in Informationssystemen eingesetzt und dem Nutzer angeboten werden kann. Für die Tests wurden Fragestellungen und Daten aus zwei Evaluationsprojekten (CLEF und KoMoHe) verwendet. Die intellektuell bewerteten Dokumente stammen aus insgesamt sieben wissenschaftlichen Fachdatenbanken der Fächer Sozialwissenschaften, Politikwissenschaft, Wirtschaftswissenschaften, Psychologie und Medizin. Die Evaluation der Crosskonkordanzen (insgesamt 82 Fragestellungen) zeigt, dass sich die Retrievalergebnisse signifikant für alle Crosskonkordanzen verbessern; es zeigt sich zudem, dass interdisziplinäre Crosskonkordanzen den stärksten (positiven) Effekt auf die Suchergebnisse haben. Die Evaluation des Re-Ranking nach Bradfordizing (insgesamt 164 Fragestellungen) zeigt, dass die Dokumente der Kernzone (Kernzeitschriften) für die meisten Testreihen eine signifikant höhere Precision als Dokumente der Zone 2 und Zone 3 (Peripheriezeitschriften) ergeben. Sowohl für Zeitschriften als auch für Monographien kann dieser Relevanzvorteil nach Bradfordizing auf einer sehr breiten Basis von Themen und Fragestellungen an zwei unabhängigen Dokumentkorpora empirisch nachgewiesen werden.