Search (146 results, page 8 of 8)

  • × theme_ss:"Retrievalalgorithmen"
  • × year_i:[2000 TO 2010}
  1. Dominich, S.; Skrop, A.: PageRank and interaction information retrieval (2005) 0.00
    8.9242304E-4 = product of:
      0.005354538 = sum of:
        0.005354538 = weight(_text_:in in 3268) [ClassicSimilarity], result of:
          0.005354538 = score(doc=3268,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.09017298 = fieldWeight in 3268, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=3268)
      0.16666667 = coord(1/6)
    
    Abstract
    The PageRank method is used by the Google Web search engine to compute the importance of Web pages. Two different views have been developed for the Interpretation of the PageRank method and values: (a) stochastic (random surfer): the PageRank values can be conceived as the steady-state distribution of a Markov chain, and (b) algebraic: the PageRank values form the eigenvector corresponding to eigenvalue 1 of the Web link matrix. The Interaction Information Retrieval (1**2 R) method is a nonclassical information retrieval paradigm, which represents a connectionist approach based an dynamic systems. In the present paper, a different Interpretation of PageRank is proposed, namely, a dynamic systems viewpoint, by showing that the PageRank method can be formally interpreted as a particular case of the Interaction Information Retrieval method; and thus, the PageRank values may be interpreted as neutral equilibrium points of the Web.
  2. Radev, D.; Fan, W.; Qu, H.; Wu, H.; Grewal, A.: Probabilistic question answering on the Web (2005) 0.00
    8.9242304E-4 = product of:
      0.005354538 = sum of:
        0.005354538 = weight(_text_:in in 3455) [ClassicSimilarity], result of:
          0.005354538 = score(doc=3455,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.09017298 = fieldWeight in 3455, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=3455)
      0.16666667 = coord(1/6)
    
    Abstract
    Web-based search engines such as Google and NorthernLight return documents that are relevant to a user query, not answers to user questions. We have developed an architecture that augments existing search engines so that they support natural language question answering. The process entails five steps: query modulation, document retrieval, passage extraction, phrase extraction, and answer ranking. In this article, we describe some probabilistic approaches to the last three of these stages. We show how our techniques apply to a number of existing search engines, and we also present results contrasting three different methods for question answering. Our algorithm, probabilistic phrase reranking (PPR), uses proximity and question type features and achieves a total reciprocal document rank of .20 an the TREC8 corpus. Our techniques have been implemented as a Web-accessible system, called NSIR.
  3. Singh, S.; Dey, L.: ¬A rough-fuzzy document grading system for customized text information retrieval (2005) 0.00
    8.9242304E-4 = product of:
      0.005354538 = sum of:
        0.005354538 = weight(_text_:in in 1007) [ClassicSimilarity], result of:
          0.005354538 = score(doc=1007,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.09017298 = fieldWeight in 1007, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=1007)
      0.16666667 = coord(1/6)
    
    Abstract
    Due to the large repository of documents available on the web, users are usually inundated by a large volume of information, most of which is found to be irrelevant. Since user perspectives vary, a client-side text filtering system that learns the user's perspective can reduce the problem of irrelevant retrieval. In this paper, we have provided the design of a customized text information filtering system which learns user preferences and modifies the initial query to fetch better documents. It uses a rough-fuzzy reasoning scheme. The rough-set based reasoning takes care of natural language nuances, like synonym handling, very elegantly. The fuzzy decider provides qualitative grading to the documents for the user's perusal. We have provided the detailed design of the various modules and some results related to the performance analysis of the system.
  4. Desai, M.; Spink, A.: ¬A algorithm to cluster documents based on relevance (2005) 0.00
    8.9242304E-4 = product of:
      0.005354538 = sum of:
        0.005354538 = weight(_text_:in in 1035) [ClassicSimilarity], result of:
          0.005354538 = score(doc=1035,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.09017298 = fieldWeight in 1035, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=1035)
      0.16666667 = coord(1/6)
    
    Abstract
    Search engines fail to make a clear distinction between items of varying relevance when presenting search results to users. Instead, they rely on the user of the system to estimate which items are relevant, partially relevant, or not relevant. The user of the system is given the task of distinguishing between documents that are relevant to different degrees. This process often hinders the accessibility of relevant or partially relevant documents, particularly when the results set is large and documents of varying relevance are scattered throughout the set. In this paper, we present a clustering scheme that groups documents within relevant, partially relevant, and not relevant regions for a given search. A clustering algorithm accomplishes the task of clustering documents based on relevance. The clusters were evaluated by end-users issuing categorical, interval, and descriptive relevance judgments for the documents returned from a search. The degree of overlap between users and the system for each of the clustered regions was measured to determine the overall effectiveness of the algorithm. This research showed that clustering documents on the Web by regions of relevance is highly necessary and quite feasible.
  5. Kang, I.-H.; Kim, G.C.: Integration of multiple evidences based on a query type for web search (2004) 0.00
    7.4368593E-4 = product of:
      0.0044621155 = sum of:
        0.0044621155 = weight(_text_:in in 2568) [ClassicSimilarity], result of:
          0.0044621155 = score(doc=2568,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.07514416 = fieldWeight in 2568, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2568)
      0.16666667 = coord(1/6)
    
    Abstract
    The massive and heterogeneous Web exacerbates IR problems and short user queries make them worse. The contents of web pages are not enough to find answer pages. PageRank compensates for the insufficiencies of content information. The content information and PageRank are combined to get better results. However, static combination of multiple evidences may lower the retrieval performance. We have to use different strategies to meet the need of a user. We can classify user queries as three categories according to users' intent, the topic relevance task, the homepage finding task, and the service finding task. In this paper, we present a user query classification method. The difference of distribution, mutual information, the usage rate as anchor texts and the POS information are used for the classification. After we classified a user query, we apply different algorithms and information for the better results. For the topic relevance task, we emphasize the content information, on the other hand, for the homepage finding task, we emphasize the Link information and the URL information. We could get the best performance when our proposed classification method with the OKAPI scoring algorithm was used.
  6. Chen, Z.; Meng, X.; Fowler, R.H.; Zhu, B.: Real-time adaptive feature and document learning for Web search (2001) 0.00
    7.4368593E-4 = product of:
      0.0044621155 = sum of:
        0.0044621155 = weight(_text_:in in 5209) [ClassicSimilarity], result of:
          0.0044621155 = score(doc=5209,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.07514416 = fieldWeight in 5209, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5209)
      0.16666667 = coord(1/6)
    
    Abstract
    Chen et alia report on the design of FEATURES, a web search engine with adaptive features based on minimal relevance feedback. Rather than developing user profiles from previous searcher activity either at the server or client location, or updating indexes after search completion, FEATURES allows for index and user characterization files to be updated during query modification on retrieval from a general purpose search engine. Indexing terms relevant to a query are defined as the union of all terms assigned to documents retrieved by the initial search run and are used to build a vector space model on this retrieved set. The top ten weighted terms are presented to the user for a relevant non-relevant choice which is used to modify the term weights. Documents are chosen if their summed term weights are greater than some threshold. A user evaluation of the top ten ranked documents as non-relevant will decrease these term weights and a positive judgement will increase them. A new ordering of the retrieved set will generate new display lists of terms and documents. Precision is improved in a test on Alta Vista searches.

Languages

  • e 125
  • d 19
  • m 1
  • sp 1
  • More… Less…

Types

  • a 129
  • m 8
  • x 6
  • el 3
  • s 2
  • r 1
  • More… Less…