Search (21 results, page 1 of 2)

  • × theme_ss:"Semantic Web"
  • × theme_ss:"Semantische Interoperabilität"
  • × type_ss:"a"
  1. Heflin, J.; Hendler, J.: Semantic interoperability on the Web (2000) 0.03
    0.026575929 = product of:
      0.053151857 = sum of:
        0.053151857 = sum of:
          0.009471525 = weight(_text_:a in 759) [ClassicSimilarity], result of:
            0.009471525 = score(doc=759,freq=8.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.17835285 = fieldWeight in 759, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0546875 = fieldNorm(doc=759)
          0.043680333 = weight(_text_:22 in 759) [ClassicSimilarity], result of:
            0.043680333 = score(doc=759,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.2708308 = fieldWeight in 759, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=759)
      0.5 = coord(1/2)
    
    Abstract
    XML will have a profound impact on the way data is exchanged on the Internet. An important feature of this language is the separation of content from presentation, which makes it easier to select and/or reformat the data. However, due to the likelihood of numerous industry and domain specific DTDs, those who wish to integrate information will still be faced with the problem of semantic interoperability. In this paper we discuss why this problem is not solved by XML, and then discuss why the Resource Description Framework is only a partial solution. We then present the SHOE language, which we feel has many of the features necessary to enable a semantic web, and describe an existing set of tools that make it easy to use the language.
    Date
    11. 5.2013 19:22:18
    Type
    a
  2. Schneider, R.: Web 3.0 ante portas? : Integration von Social Web und Semantic Web (2008) 0.03
    0.025188856 = product of:
      0.05037771 = sum of:
        0.05037771 = sum of:
          0.00669738 = weight(_text_:a in 4184) [ClassicSimilarity], result of:
            0.00669738 = score(doc=4184,freq=4.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.12611452 = fieldWeight in 4184, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0546875 = fieldNorm(doc=4184)
          0.043680333 = weight(_text_:22 in 4184) [ClassicSimilarity], result of:
            0.043680333 = score(doc=4184,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.2708308 = fieldWeight in 4184, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=4184)
      0.5 = coord(1/2)
    
    Date
    22. 1.2011 10:38:28
    Source
    Kommunikation, Partizipation und Wirkungen im Social Web, Band 1. Hrsg.: A. Zerfaß u.a
    Type
    a
  3. Veltman, K.H.: Syntactic and semantic interoperability : new approaches to knowledge and the Semantic Web (2001) 0.00
    0.00270615 = product of:
      0.0054123 = sum of:
        0.0054123 = product of:
          0.0108246 = sum of:
            0.0108246 = weight(_text_:a in 3883) [ClassicSimilarity], result of:
              0.0108246 = score(doc=3883,freq=32.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20383182 = fieldWeight in 3883, product of:
                  5.656854 = tf(freq=32.0), with freq of:
                    32.0 = termFreq=32.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3883)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    At VVWW-7 (Brisbane, 1997), Tim Berners-Lee outlined his vision of a global reasoning web. At VVWW- 8 (Toronto, May 1998), he developed this into a vision of a semantic web, where one Gould search not just for isolated words, but for meaning in the form of logically provable claims. In the past four years this vision has spread with amazing speed. The semantic web has been adopted by the European Commission as one of the important goals of the Sixth Framework Programme. In the United States it has become linked with the Defense Advanced Research Projects Agency (DARPA). While this quest to achieve a semantic web is new, the quest for meaning in language has a history that is almost as old as language itself. Accordingly this paper opens with a survey of the historical background. The contributions of the Dublin Core are reviewed briefly. To achieve a semantic web requires both syntactic and semantic interoperability. These challenges are outlined. A basic contention of this paper is that semantic interoperability requires much more than a simple agreement concerning the static meaning of a term. Different levels of agreement (local, regional, national and international) are involved and these levels have their own history. Hence, one of the larger challenges is to create new systems of knowledge organization, which identify and connect these different levels. With respect to meaning or semantics, early twentieth century pioneers such as Wüster were hopeful that it might be sufficient to limit oneself to isolated terms and words without reference to the larger grammatical context: to concept systems rather than to propositional logic. While a fascination with concept systems implicitly dominates many contemporary discussions, this paper suggests why this approach is not sufficient. The final section of this paper explores how an approach using propositional logic could lead to a new approach to universals and particulars. This points to a re-organization of knowledge, and opens the way for a vision of a semantic web with all the historical and cultural richness and complexity of language itself.
    Type
    a
  4. Liang, A.; Salokhe, G.; Sini, M.; Keizer, J.: Towards an infrastructure for semantic applications : methodologies for semantic integration of heterogeneous resources (2006) 0.00
    0.0026849252 = product of:
      0.0053698504 = sum of:
        0.0053698504 = product of:
          0.010739701 = sum of:
            0.010739701 = weight(_text_:a in 241) [ClassicSimilarity], result of:
              0.010739701 = score(doc=241,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20223314 = fieldWeight in 241, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=241)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The semantic heterogeneity presented by Web information in the Agricultural domain presents tremendous information retrieval challenges. This article presents work taking place at the Food and Agriculture Organizations (FAO) which addresses this challenge. Based on the analysis of resources in the domain of agriculture, this paper proposes (a) an application profile (AP) for dealing with the problem of heterogeneity originating from differences in terminologies, domain coverage, and domain modelling, and (b) a root application ontology (AAO) based on the application profile which can serve as a basis for extending knowledge of the domain. The paper explains how even a small investment in the enhancement of relations between vocabularies, both metadata and domain-specific, yields a relatively large return on investment.
    Type
    a
  5. Carbonaro, A.; Santandrea, L.: ¬A general Semantic Web approach for data analysis on graduates statistics 0.00
    0.0026742492 = product of:
      0.0053484985 = sum of:
        0.0053484985 = product of:
          0.010696997 = sum of:
            0.010696997 = weight(_text_:a in 5309) [ClassicSimilarity], result of:
              0.010696997 = score(doc=5309,freq=20.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20142901 = fieldWeight in 5309, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5309)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Currently, several datasets released in a Linked Open Data format are available at a national and international level, but the lack of shared strategies concerning the definition of concepts related to the statistical publishing community makes difficult a comparison among given facts starting from different data sources. In order to guarantee a shared representation framework for what concerns the dissemination of statistical concepts about graduates, we developed SW4AL, an ontology-based system for graduate's surveys domain. The developed system transforms low-level data into an enriched information model and is based on the AlmaLaurea surveys covering more than 90% of Italian graduates. SW4AL: i) semantically describes the different peculiarities of the graduates; ii) promotes the structured definition of the AlmaLaurea data and the following publication in the Linked Open Data context; iii) provides their reuse in the open data scope; iv) enables logical reasoning about knowledge representation. SW4AL establishes a common semantic for addressing the concept of graduate's surveys domain by proposing the creation of a SPARQL endpoint and a Web based interface for the query and the visualization of the structured data.
    Type
    a
  6. Baker, T.; Sutton, S.A.: Linked data and the charm of weak semantics : Introduction: the strengths of weak semantics (2015) 0.00
    0.0025370158 = product of:
      0.0050740317 = sum of:
        0.0050740317 = product of:
          0.010148063 = sum of:
            0.010148063 = weight(_text_:a in 2022) [ClassicSimilarity], result of:
              0.010148063 = score(doc=2022,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19109234 = fieldWeight in 2022, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2022)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Logic and precision are fundamental to ontologies underlying the semantic web and, by extension, to linked data. This special section focuses on the interaction of semantics, ontologies and linked data. The discussion presents the Simple Knowledge Organization Scheme (SKOS) as a less formal strategy for expressing concept hierarchies and associations and questions the value of deep domain ontologies in favor of simpler vocabularies that are more open to reuse, albeit risking illogical outcomes. RDF ontologies harbor another unexpected drawback. While structurally sound, they leave validation gaps permitting illogical uses, a problem being addressed by a W3C Working Group. Data models based on RDF graphs and properties may replace traditional library catalog models geared to predefined entities, with relationships between RDF classes providing the semantic connections. The BIBFRAME Initiative takes a different and streamlined approach to linking data, building rich networks of information resources rather than relying on a strict underlying structure and vocabulary. Taken together, the articles illustrate the trend toward a pragmatic approach to a Semantic Web, sacrificing some specificity for greater flexibility and partial interoperability.
    Footnote
    Introduction to a special section "Linked data and the charm of weak semantics".
    Type
    a
  7. Svensson, L.G.: Unified access : a semantic Web based model for multilingual navigation in heterogeneous data sources (2008) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 2191) [ClassicSimilarity], result of:
              0.00994303 = score(doc=2191,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 2191, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2191)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Most online library catalogues are not well equipped for subject search. On the one hand it is difficult to navigate the structures of the thesauri and classification systems used for indexing. Further, there is little or no support for the integration of crosswalks between different controlled vocabularies, so that a subject search query formulated using one controlled vocabulary will not find resources indexed with another knowledge organisation system even if there exists a crosswalk between them. In this paper we will look at SemanticWeb technologies and a prototype system leveraging those technologies in order to enhance the subject search possibilities in heterogeneously indexed repositories. Finally, we will have a brief look at different initiatives aimed at integrating library data into the SemanticWeb.
    Type
    a
  8. Sartini, B.; Erp, M. van; Gangemi, A.: Marriage is a peach and a chalice : modelling cultural symbolism on the Semantic Web (2021) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 557) [ClassicSimilarity], result of:
              0.00994303 = score(doc=557,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 557, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=557)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this work, we fill the gap in the Semantic Web in the context of Cultural Symbolism. Building upon earlier work in \citesartini_towards_2021, we introduce the Simulation Ontology, an ontology that models the background knowledge of symbolic meanings, developed by combining the concepts taken from the authoritative theory of Simulacra and Simulations of Jean Baudrillard with symbolic structures and content taken from "Symbolism: a Comprehensive Dictionary'' by Steven Olderr. We re-engineered the symbolic knowledge already present in heterogeneous resources by converting it into our ontology schema to create HyperReal, the first knowledge graph completely dedicated to cultural symbolism. A first experiment run on the knowledge graph is presented to show the potential of quantitative research on symbolism.
    Type
    a
  9. Isaac, A.; Baker, T.: Linked data practice at different levels of semantic precision : the perspective of libraries, archives and museums (2015) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 2026) [ClassicSimilarity], result of:
              0.008285859 = score(doc=2026,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 2026, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2026)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Libraries, archives and museums rely on structured schemas and vocabularies to indicate classes in which a resource may belong. In the context of linked data, key organizational components are the RDF data model, element schemas and value vocabularies, with simple ontologies having minimally defined classes and properties in order to facilitate reuse and interoperability. Simplicity over formal semantics is a tenet of the open-world assumption underlying ontology languages central to the Semantic Web, but the result is a lack of constraints, data quality checks and validation capacity. Inconsistent use of vocabularies and ontologies that do not follow formal semantics rules and logical concept hierarchies further complicate the use of Semantic Web technologies. The Simple Knowledge Organization System (SKOS) helps make existing value vocabularies available in the linked data environment, but it exchanges precision for simplicity. Incompatibilities between simple organized vocabularies, Resource Description Framework Schemas and OWL ontologies and even basic notions of subjects and concepts prevent smooth translations and challenge the conversion of cultural institutions' unique legacy vocabularies for linked data. Adopting the linked data vision requires accepting loose semantic interpretations. To avoid semantic inconsistencies and illogical results, cultural organizations following the linked data path must be careful to choose the level of semantics that best suits their domain and needs.
    Footnote
    Contribution to a special section "Linked data and the charm of weak semantics".
    Type
    a
  10. Koutsomitropoulos, D.A.; Solomou, G.D.; Alexopoulos, A.D.; Papatheodorou, T.S.: Semantic metadata interoperability and inference-based querying in digital repositories (2009) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 3731) [ClassicSimilarity], result of:
              0.008118451 = score(doc=3731,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 3731, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3731)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Metadata applications have evolved in time into highly structured "islands of information" about digital resources, often bearing a strong semantic interpretation. Scarcely however are these semantics being communicated in machine readable and understandable ways. At the same time, the process for transforming the implied metadata knowledge into explicit Semantic Web descriptions can be problematic and is not always evident. In this article we take upon the well-established Dublin Core metadata standard as well as other metadata schemata, which often appear in digital repositories set-ups, and suggest a proper Semantic Web OWL ontology. In this process the authors cope with discrepancies and incompatibilities, indicative of such attempts, in novel ways. Moreover, we show the potential and necessity of this approach by demonstrating inferences on the resulting ontology, instantiated with actual metadata records. The authors conclude by presenting a working prototype that provides for inference-based querying on top of digital repositories.
    Type
    a
  11. Stamou, G.; Chortaras, A.: Ontological query answering over semantic data (2017) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 3926) [ClassicSimilarity], result of:
              0.007654148 = score(doc=3926,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 3926, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3926)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  12. Krause, J.: Shell Model, Semantic Web and Web Information Retrieval (2006) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 6061) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=6061,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 6061, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6061)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The middle of the 1990s are coined by the increased enthusiasm for the possibilities of the WWW, which has only recently deviated - at least in relation to scientific information - for the differentiated measuring of its advantages and disadvantages. Web Information Retrieval originated as a specialized discipline with great commercial significance (for an overview see Lewandowski 2005). Besides the new technological structure that enables the indexing and searching (in seconds) of unimaginable amounts of data worldwide, new assessment processes for the ranking of search results are being developed, which use the link structures of the Web. They are the main innovation with respect to the traditional "mother discipline" of Information Retrieval. From the beginning, link structures of Web pages are applied to commercial search engines in a wide array of variations. From the perspective of scientific information, link topology based approaches were in essence trying to solve a self-created problem: on the one hand, it quickly became clear that the openness of the Web led to an up-tonow unknown increase in available information, but this also caused the quality of the Web pages searched to become a problem - and with it the relevance of the results. The gatekeeper function of traditional information providers, which narrows down every user query to focus on high-quality sources was lacking. Therefore, the recognition of the "authoritativeness" of the Web pages by general search engines such as Google was one of the most important factors for their success.
    Type
    a
  13. Krause, J.: Semantic heterogeneity : comparing new semantic web approaches with those of digital libraries (2008) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 1908) [ClassicSimilarity], result of:
              0.006765375 = score(doc=1908,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 1908, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1908)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - To demonstrate that newer developments in the semantic web community, particularly those based on ontologies (simple knowledge organization system and others) mitigate common arguments from the digital library (DL) community against participation in the Semantic web. Design/methodology/approach - The approach is a semantic web discussion focusing on the weak structure of the Web and the lack of consideration given to the semantic content during indexing. Findings - The points criticised by the semantic web and ontology approaches are the same as those of the DL "Shell model approach" from the mid-1990s, with emphasis on the centrality of its heterogeneity components (used, for example, in vascoda). The Shell model argument began with the "invisible web", necessitating the restructuring of DL approaches. The conclusion is that both approaches fit well together and that the Shell model, with its semantic heterogeneity components, can be reformulated on the semantic web basis. Practical implications - A reinterpretation of the DL approaches of semantic heterogeneity and adapting to standards and tools supported by the W3C should be the best solution. It is therefore recommended that - although most of the semantic web standards are not technologically refined for commercial applications at present - all individual DL developments should be checked for their adaptability to the W3C standards of the semantic web. Originality/value - A unique conceptual analysis of the parallel developments emanating from the digital library and semantic web communities.
    Type
    a
  14. Mayr, P.; Mutschke, P.; Petras, V.: Reducing semantic complexity in distributed digital libraries : Treatment of term vagueness and document re-ranking (2008) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 1909) [ClassicSimilarity], result of:
              0.006765375 = score(doc=1909,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 1909, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1909)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - The general science portal "vascoda" merges structured, high-quality information collections from more than 40 providers on the basis of search engine technology (FAST) and a concept which treats semantic heterogeneity between different controlled vocabularies. First experiences with the portal show some weaknesses of this approach which come out in most metadata-driven Digital Libraries (DLs) or subject specific portals. The purpose of the paper is to propose models to reduce the semantic complexity in heterogeneous DLs. The aim is to introduce value-added services (treatment of term vagueness and document re-ranking) that gain a certain quality in DLs if they are combined with heterogeneity components established in the project "Competence Center Modeling and Treatment of Semantic Heterogeneity". Design/methodology/approach - Two methods, which are derived from scientometrics and network analysis, will be implemented with the objective to re-rank result sets by the following structural properties: the ranking of the results by core journals (so-called Bradfordizing) and ranking by centrality of authors in co-authorship networks. Findings - The methods, which will be implemented, focus on the query and on the result side of a search and are designed to positively influence each other. Conceptually, they will improve the search quality and guarantee that the most relevant documents in result sets will be ranked higher. Originality/value - The central impact of the paper focuses on the integration of three structural value-adding methods, which aim at reducing the semantic complexity represented in distributed DLs at several stages in the information retrieval process: query construction, search and ranking and re-ranking.
    Type
    a
  15. Piscitelli, F.A.: Library linked data models : library data in the Semantic Web (2019) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 5478) [ClassicSimilarity], result of:
              0.006765375 = score(doc=5478,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 5478, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5478)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This exploratory study examined Linked Data (LD) schemas/ontologies and data models proposed or in use by libraries around the world using MAchine Readable Cataloging (MARC) as a basis for comparison of the scope and extensibility of these potential new standards. The researchers selected 14 libraries from national libraries, academic libraries, government libraries, public libraries, multi-national libraries, and cultural heritage centers currently developing Library Linked Data (LLD) schemas. The choices of models, schemas, and elements used in each library's LD can create interoperability issues for LD services because of substantial differences between schemas and data models evolving via local decisions. The researchers observed that a wide variety of vocabularies and ontologies were used for LLD including common web schemas such as Dublin Core (DC)/DCTerms, Schema.org and Resource Description Framework (RDF), as well as deprecated schemas such as MarcOnt and rdagroup1elements. A sharp divide existed as well between LLD schemas using variations of the Functional Requirements for Bibliographic Records (FRBR) data model and those with different data models or even with no listed data model. Libraries worldwide are not using the same elements or even the same ontologies, schemas and data models to describe the same materials using the same general concepts.
    Type
    a
  16. Binding, C.; Gnoli, C.; Tudhope, D.: Migrating a complex classification scheme to the semantic web : expressing the Integrative Levels Classification using SKOS RDF (2021) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 600) [ClassicSimilarity], result of:
              0.006765375 = score(doc=600,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 600, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=600)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose The Integrative Levels Classification (ILC) is a comprehensive "freely faceted" knowledge organization system not previously expressed as SKOS (Simple Knowledge Organization System). This paper reports and reflects on work converting the ILC to SKOS representation. Design/methodology/approach The design of the ILC representation and the various steps in the conversion to SKOS are described and located within the context of previous work considering the representation of complex classification schemes in SKOS. Various issues and trade-offs emerging from the conversion are discussed. The conversion implementation employed the STELETO transformation tool. Findings The ILC conversion captures some of the ILC facet structure by a limited extension beyond the SKOS standard. SPARQL examples illustrate how this extension could be used to create faceted, compound descriptors when indexing or cataloguing. Basic query patterns are provided that might underpin search systems. Possible routes for reducing complexity are discussed. Originality/value Complex classification schemes, such as the ILC, have features which are not straight forward to represent in SKOS and which extend beyond the functionality of the SKOS standard. The ILC's facet indicators are modelled as rdf:Property sub-hierarchies that accompany the SKOS RDF statements. The ILC's top-level fundamental facet relationships are modelled by extensions of the associative relationship - specialised sub-properties of skos:related. An approach for representing faceted compound descriptions in ILC and other faceted classification schemes is proposed.
    Type
    a
  17. Isaac, A.; Schlobach, S.; Matthezing, H.; Zinn, C.: Integrated access to cultural heritage resources through representation and alignment of controlled vocabularies (2008) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 3398) [ClassicSimilarity], result of:
              0.0054123 = score(doc=3398,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 3398, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3398)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - To show how semantic web techniques can help address semantic interoperability issues in the broad cultural heritage domain, allowing users an integrated and seamless access to heterogeneous collections. Design/methodology/approach - This paper presents the heterogeneity problems to be solved. It introduces semantic web techniques that can help in solving them, focusing on the representation of controlled vocabularies and their semantic alignment. It gives pointers to some previous projects and experiments that have tried to address the problems discussed. Findings - Semantic web research provides practical technical and methodological approaches to tackle the different issues. Two contributions of interest are the simple knowledge organisation system model and automatic vocabulary alignment methods and tools. These contributions were demonstrated to be usable for enabling semantic search and navigation across collections. Research limitations/implications - The research aims at designing different representation and alignment methods for solving interoperability problems in the context of controlled subject vocabularies. Given the variety and technical richness of current research in the semantic web field, it is impossible to provide an in-depth account or an exhaustive list of references. Every aspect of the paper is, however, given one or several pointers for further reading. Originality/value - This article provides a general and practical introduction to relevant semantic web techniques. It is of specific value for the practitioners in the cultural heritage and digital library domains who are interested in applying these methods in practice.
    Content
    This paper is based on a talk given at "Information Access for the Global Community, An International Seminar on the Universal Decimal Classification" held on 4-5 June 2007 in The Hague, The Netherlands. An abstract of this talk will be published in Extensions and Corrections to the UDC, an annual publication of the UDC consortium. Beitrag eines Themenheftes "Digital libraries and the semantic web: context, applications and research".
    Type
    a
  18. Siwecka, D.: Knowledge organization systems used in European national libraries towards interoperability of the semantic Web (2018) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 4815) [ClassicSimilarity], result of:
              0.0054123 = score(doc=4815,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 4815, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4815)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  19. Borst, T.: Repositorien auf ihrem Weg in das Semantic Web : semantisch hergeleitete Interoperabilität als Zielstellung für künftige Repository-Entwicklungen (2014) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 1555) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=1555,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 1555, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1555)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  20. Neubauer, G.: Visualization of typed links in linked data (2017) 0.00
    8.4567186E-4 = product of:
      0.0016913437 = sum of:
        0.0016913437 = product of:
          0.0033826875 = sum of:
            0.0033826875 = weight(_text_:a in 3912) [ClassicSimilarity], result of:
              0.0033826875 = score(doc=3912,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.06369744 = fieldWeight in 3912, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3912)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a