Search (7 results, page 1 of 1)

  • × theme_ss:"Semantic Web"
  • × theme_ss:"Semantische Interoperabilität"
  • × type_ss:"a"
  1. Heflin, J.; Hendler, J.: Semantic interoperability on the Web (2000) 0.01
    0.0074971514 = product of:
      0.029988606 = sum of:
        0.02024465 = product of:
          0.06073395 = sum of:
            0.06073395 = weight(_text_:problem in 759) [ClassicSimilarity], result of:
              0.06073395 = score(doc=759,freq=4.0), product of:
                0.13082431 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.030822188 = queryNorm
                0.46424055 = fieldWeight in 759, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=759)
          0.33333334 = coord(1/3)
        0.009743956 = product of:
          0.029231867 = sum of:
            0.029231867 = weight(_text_:22 in 759) [ClassicSimilarity], result of:
              0.029231867 = score(doc=759,freq=2.0), product of:
                0.10793405 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.030822188 = queryNorm
                0.2708308 = fieldWeight in 759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=759)
          0.33333334 = coord(1/3)
      0.25 = coord(2/8)
    
    Abstract
    XML will have a profound impact on the way data is exchanged on the Internet. An important feature of this language is the separation of content from presentation, which makes it easier to select and/or reformat the data. However, due to the likelihood of numerous industry and domain specific DTDs, those who wish to integrate information will still be faced with the problem of semantic interoperability. In this paper we discuss why this problem is not solved by XML, and then discuss why the Resource Description Framework is only a partial solution. We then present the SHOE language, which we feel has many of the features necessary to enable a semantic web, and describe an existing set of tools that make it easy to use the language.
    Date
    11. 5.2013 19:22:18
  2. Krause, J.: Shell Model, Semantic Web and Web Information Retrieval (2006) 0.00
    0.0018075579 = product of:
      0.014460463 = sum of:
        0.014460463 = product of:
          0.04338139 = sum of:
            0.04338139 = weight(_text_:problem in 6061) [ClassicSimilarity], result of:
              0.04338139 = score(doc=6061,freq=4.0), product of:
                0.13082431 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.030822188 = queryNorm
                0.33160037 = fieldWeight in 6061, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6061)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Abstract
    The middle of the 1990s are coined by the increased enthusiasm for the possibilities of the WWW, which has only recently deviated - at least in relation to scientific information - for the differentiated measuring of its advantages and disadvantages. Web Information Retrieval originated as a specialized discipline with great commercial significance (for an overview see Lewandowski 2005). Besides the new technological structure that enables the indexing and searching (in seconds) of unimaginable amounts of data worldwide, new assessment processes for the ranking of search results are being developed, which use the link structures of the Web. They are the main innovation with respect to the traditional "mother discipline" of Information Retrieval. From the beginning, link structures of Web pages are applied to commercial search engines in a wide array of variations. From the perspective of scientific information, link topology based approaches were in essence trying to solve a self-created problem: on the one hand, it quickly became clear that the openness of the Web led to an up-tonow unknown increase in available information, but this also caused the quality of the Web pages searched to become a problem - and with it the relevance of the results. The gatekeeper function of traditional information providers, which narrows down every user query to focus on high-quality sources was lacking. Therefore, the recognition of the "authoritativeness" of the Web pages by general search engines such as Google was one of the most important factors for their success.
  3. Liang, A.; Salokhe, G.; Sini, M.; Keizer, J.: Towards an infrastructure for semantic applications : methodologies for semantic integration of heterogeneous resources (2006) 0.00
    0.0015337638 = product of:
      0.012270111 = sum of:
        0.012270111 = product of:
          0.03681033 = sum of:
            0.03681033 = weight(_text_:problem in 241) [ClassicSimilarity], result of:
              0.03681033 = score(doc=241,freq=2.0), product of:
                0.13082431 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.030822188 = queryNorm
                0.28137225 = fieldWeight in 241, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.046875 = fieldNorm(doc=241)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Abstract
    The semantic heterogeneity presented by Web information in the Agricultural domain presents tremendous information retrieval challenges. This article presents work taking place at the Food and Agriculture Organizations (FAO) which addresses this challenge. Based on the analysis of resources in the domain of agriculture, this paper proposes (a) an application profile (AP) for dealing with the problem of heterogeneity originating from differences in terminologies, domain coverage, and domain modelling, and (b) a root application ontology (AAO) based on the application profile which can serve as a basis for extending knowledge of the domain. The paper explains how even a small investment in the enhancement of relations between vocabularies, both metadata and domain-specific, yields a relatively large return on investment.
  4. Stamou, G.; Chortaras, A.: Ontological query answering over semantic data (2017) 0.00
    0.0014046291 = product of:
      0.011237033 = sum of:
        0.011237033 = product of:
          0.033711098 = sum of:
            0.033711098 = weight(_text_:29 in 3926) [ClassicSimilarity], result of:
              0.033711098 = score(doc=3926,freq=2.0), product of:
                0.108422816 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.030822188 = queryNorm
                0.31092256 = fieldWeight in 3926, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3926)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Pages
    S.29-63
  5. Siwecka, D.: Knowledge organization systems used in European national libraries towards interoperability of the semantic Web (2018) 0.00
    0.0014046291 = product of:
      0.011237033 = sum of:
        0.011237033 = product of:
          0.033711098 = sum of:
            0.033711098 = weight(_text_:29 in 4815) [ClassicSimilarity], result of:
              0.033711098 = score(doc=4815,freq=2.0), product of:
                0.108422816 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.030822188 = queryNorm
                0.31092256 = fieldWeight in 4815, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4815)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Date
    18. 1.2019 18:46:29
  6. Baker, T.; Sutton, S.A.: Linked data and the charm of weak semantics : Introduction: the strengths of weak semantics (2015) 0.00
    0.0012781365 = product of:
      0.010225092 = sum of:
        0.010225092 = product of:
          0.030675275 = sum of:
            0.030675275 = weight(_text_:problem in 2022) [ClassicSimilarity], result of:
              0.030675275 = score(doc=2022,freq=2.0), product of:
                0.13082431 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.030822188 = queryNorm
                0.23447686 = fieldWeight in 2022, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2022)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Abstract
    Logic and precision are fundamental to ontologies underlying the semantic web and, by extension, to linked data. This special section focuses on the interaction of semantics, ontologies and linked data. The discussion presents the Simple Knowledge Organization Scheme (SKOS) as a less formal strategy for expressing concept hierarchies and associations and questions the value of deep domain ontologies in favor of simpler vocabularies that are more open to reuse, albeit risking illogical outcomes. RDF ontologies harbor another unexpected drawback. While structurally sound, they leave validation gaps permitting illogical uses, a problem being addressed by a W3C Working Group. Data models based on RDF graphs and properties may replace traditional library catalog models geared to predefined entities, with relationships between RDF classes providing the semantic connections. The BIBFRAME Initiative takes a different and streamlined approach to linking data, building rich networks of information resources rather than relying on a strict underlying structure and vocabulary. Taken together, the articles illustrate the trend toward a pragmatic approach to a Semantic Web, sacrificing some specificity for greater flexibility and partial interoperability.
  7. Schneider, R.: Web 3.0 ante portas? : Integration von Social Web und Semantic Web (2008) 0.00
    0.0012179945 = product of:
      0.009743956 = sum of:
        0.009743956 = product of:
          0.029231867 = sum of:
            0.029231867 = weight(_text_:22 in 4184) [ClassicSimilarity], result of:
              0.029231867 = score(doc=4184,freq=2.0), product of:
                0.10793405 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.030822188 = queryNorm
                0.2708308 = fieldWeight in 4184, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4184)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Date
    22. 1.2011 10:38:28