Search (4 results, page 1 of 1)

  • × theme_ss:"Semantic Web"
  • × theme_ss:"Semantische Interoperabilität"
  • × type_ss:"el"
  1. Vocht, L. De: Exploring semantic relationships in the Web of Data : Semantische relaties verkennen in data op het web (2017) 0.00
    0.0031246517 = product of:
      0.012498607 = sum of:
        0.008105176 = weight(_text_:retrieval in 4232) [ClassicSimilarity], result of:
          0.008105176 = score(doc=4232,freq=2.0), product of:
            0.09700725 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.032069415 = queryNorm
            0.08355226 = fieldWeight in 4232, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.01953125 = fieldNorm(doc=4232)
        0.0043934314 = product of:
          0.008786863 = sum of:
            0.008786863 = weight(_text_:system in 4232) [ClassicSimilarity], result of:
              0.008786863 = score(doc=4232,freq=2.0), product of:
                0.10100432 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.032069415 = queryNorm
                0.08699492 = fieldWeight in 4232, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=4232)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    This PhD-thesis describes how to effectively explore linked data on the Web. The main focus is on scenarios where users want to discover relationships between resources rather than finding out more about something specific. Searching for a specific document or piece of information fits in the theoretical framework of information retrieval and is associated with exploratory search. Exploratory search goes beyond 'looking up something' when users are seeking more detailed understanding, further investigation or navigation of the initial search results. The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. Queries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research. Our first technique focuses on the interactive visualization of search results. Linked data resources can be brought in relation with each other at will. This leads to complex and diverse graphs structures. Our technique facilitates navigation and supports a workflow starting from a broad overview on the data and allows narrowing down until the desired level of detail to then broaden again. To validate the flow, two visualizations where implemented and presented to test-users. The users judged the usability of the visualizations, how the visualizations fit in the workflow and to which degree their features seemed useful for the exploration of linked data.
    When we speak about finding relationships between resources, it is necessary to dive deeper in the structure. The graph structure of linked data where the semantics give meaning to the relationships between resources enable the execution of pathfinding algorithms. The assigned weights and heuristics are base components of such algorithms and ultimately define (the order) which resources are included in a path. These paths explain indirect connections between resources. Our third technique proposes an algorithm that optimizes the choice of resources in terms of serendipity. Some optimizations guard the consistence of candidate-paths where the coherence of consecutive connections is maximized to avoid trivial and too arbitrary paths. The implementation uses the A* algorithm, the de-facto reference when it comes to heuristically optimized minimal cost paths. The effectiveness of paths was measured based on common automatic metrics and surveys where the users could indicate their preference for paths, generated each time in a different way. Finally, all our techniques are applied to a use case about publications in digital libraries where they are aligned with information about scientific conferences and researchers. The application to this use case is a practical example because the different aspects of exploratory search come together. In fact, the techniques also evolved from the experiences when implementing the use case. Practical details about the semantic model are explained and the implementation of the search system is clarified module by module. The evaluation positions the result, a prototype of a tool to explore scientific publications, researchers and conferences next to some important alternatives.
  2. Heflin, J.; Hendler, J.: Semantic interoperability on the Web (2000) 0.00
    0.0019009212 = product of:
      0.01520737 = sum of:
        0.01520737 = product of:
          0.03041474 = sum of:
            0.03041474 = weight(_text_:22 in 759) [ClassicSimilarity], result of:
              0.03041474 = score(doc=759,freq=2.0), product of:
                0.112301625 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.032069415 = queryNorm
                0.2708308 = fieldWeight in 759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=759)
          0.5 = coord(1/2)
      0.125 = coord(1/8)
    
    Date
    11. 5.2013 19:22:18
  3. Carbonaro, A.; Santandrea, L.: ¬A general Semantic Web approach for data analysis on graduates statistics 0.00
    0.0015533128 = product of:
      0.012426502 = sum of:
        0.012426502 = product of:
          0.024853004 = sum of:
            0.024853004 = weight(_text_:system in 5309) [ClassicSimilarity], result of:
              0.024853004 = score(doc=5309,freq=4.0), product of:
                0.10100432 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.032069415 = queryNorm
                0.24605882 = fieldWeight in 5309, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5309)
          0.5 = coord(1/2)
      0.125 = coord(1/8)
    
    Abstract
    Currently, several datasets released in a Linked Open Data format are available at a national and international level, but the lack of shared strategies concerning the definition of concepts related to the statistical publishing community makes difficult a comparison among given facts starting from different data sources. In order to guarantee a shared representation framework for what concerns the dissemination of statistical concepts about graduates, we developed SW4AL, an ontology-based system for graduate's surveys domain. The developed system transforms low-level data into an enriched information model and is based on the AlmaLaurea surveys covering more than 90% of Italian graduates. SW4AL: i) semantically describes the different peculiarities of the graduates; ii) promotes the structured definition of the AlmaLaurea data and the following publication in the Linked Open Data context; iii) provides their reuse in the open data scope; iv) enables logical reasoning about knowledge representation. SW4AL establishes a common semantic for addressing the concept of graduate's surveys domain by proposing the creation of a SPARQL endpoint and a Web based interface for the query and the visualization of the structured data.
  4. Panzer, M.: Relationships, spaces, and the two faces of Dewey (2008) 0.00
    9.3198754E-4 = product of:
      0.0074559003 = sum of:
        0.0074559003 = product of:
          0.014911801 = sum of:
            0.014911801 = weight(_text_:system in 2127) [ClassicSimilarity], result of:
              0.014911801 = score(doc=2127,freq=4.0), product of:
                0.10100432 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.032069415 = queryNorm
                0.14763528 = fieldWeight in 2127, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=2127)
          0.5 = coord(1/2)
      0.125 = coord(1/8)
    
    Content
    "When dealing with a large-scale and widely-used knowledge organization system like the Dewey Decimal Classification, we often tend to focus solely on the organization aspect, which is closely intertwined with editorial work. This is perfectly understandable, since developing and updating the DDC, keeping up with current scientific developments, spotting new trends in both scholarly communication and popular publishing, and figuring out how to fit those patterns into the structure of the scheme are as intriguing as they are challenging. From the organization perspective, the intended user of the scheme is mainly the classifier. Dewey acts very much as a number-building engine, providing richly documented concepts to help with classification decisions. Since the Middle Ages, quasi-religious battles have been fought over the "valid" arrangement of places according to specific views of the world, as parodied by Jorge Luis Borges and others. Organizing knowledge has always been primarily an ontological activity; it is about putting the world into the classification. However, there is another side to this coin--the discovery side. While the hierarchical organization of the DDC establishes a default set of places and neighborhoods that is also visible in the physical manifestation of library shelves, this is just one set of relationships in the DDC. A KOS (Knowledge Organization System) becomes powerful by expressing those other relationships in a manner that not only collocates items in a physical place but in a knowledge space, and exposes those other relationships in ways beneficial and congenial to the unique perspective of an information seeker.