Search (16 results, page 1 of 1)

  • × theme_ss:"Semantic Web"
  • × theme_ss:"Semantische Interoperabilität"
  • × year_i:[2010 TO 2020}
  1. Metadata and semantics research : 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings (2016) 0.01
    0.010920083 = product of:
      0.021840166 = sum of:
        0.021840166 = product of:
          0.043680333 = sum of:
            0.043680333 = weight(_text_:22 in 3283) [ClassicSimilarity], result of:
              0.043680333 = score(doc=3283,freq=2.0), product of:
                0.16128273 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2708308 = fieldWeight in 3283, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3283)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  2. Baker, T.; Sutton, S.A.: Linked data and the charm of weak semantics : Introduction: the strengths of weak semantics (2015) 0.00
    0.0025370158 = product of:
      0.0050740317 = sum of:
        0.0050740317 = product of:
          0.010148063 = sum of:
            0.010148063 = weight(_text_:a in 2022) [ClassicSimilarity], result of:
              0.010148063 = score(doc=2022,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19109234 = fieldWeight in 2022, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2022)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Logic and precision are fundamental to ontologies underlying the semantic web and, by extension, to linked data. This special section focuses on the interaction of semantics, ontologies and linked data. The discussion presents the Simple Knowledge Organization Scheme (SKOS) as a less formal strategy for expressing concept hierarchies and associations and questions the value of deep domain ontologies in favor of simpler vocabularies that are more open to reuse, albeit risking illogical outcomes. RDF ontologies harbor another unexpected drawback. While structurally sound, they leave validation gaps permitting illogical uses, a problem being addressed by a W3C Working Group. Data models based on RDF graphs and properties may replace traditional library catalog models geared to predefined entities, with relationships between RDF classes providing the semantic connections. The BIBFRAME Initiative takes a different and streamlined approach to linking data, building rich networks of information resources rather than relying on a strict underlying structure and vocabulary. Taken together, the articles illustrate the trend toward a pragmatic approach to a Semantic Web, sacrificing some specificity for greater flexibility and partial interoperability.
    Footnote
    Introduction to a special section "Linked data and the charm of weak semantics".
    Type
    a
  3. Ioannou, E.; Nejdl, W.; Niederée, C.; Velegrakis, Y.: Embracing uncertainty in entity linking (2012) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 433) [ClassicSimilarity], result of:
              0.008285859 = score(doc=433,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 433, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=433)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The modern Web has grown from a publishing place of well-structured data and HTML pages for companies and experienced users into a vivid publishing and data exchange community in which everyone can participate, both as a data consumer and as a data producer. Unavoidably, the data available on the Web became highly heterogeneous, ranging from highly structured and semistructured to highly unstructured user-generated content, reflecting different perspectives and structuring principles. The full potential of such data can only be realized by combining information from multiple sources. For instance, the knowledge that is typically embedded in monolithic applications can be outsourced and, thus, used also in other applications. Numerous systems nowadays are already actively utilizing existing content from various sources such as WordNet or Wikipedia. Some well-known examples of such systems include DBpedia, Freebase, Spock, and DBLife. A major challenge during combining and querying information from multiple heterogeneous sources is entity linkage, i.e., the ability to detect whether two pieces of information correspond to the same real-world object. This chapter introduces a novel approach for addressing the entity linkage problem for heterogeneous, uncertain, and volatile data.
  4. Isaac, A.; Baker, T.: Linked data practice at different levels of semantic precision : the perspective of libraries, archives and museums (2015) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 2026) [ClassicSimilarity], result of:
              0.008285859 = score(doc=2026,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 2026, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2026)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Libraries, archives and museums rely on structured schemas and vocabularies to indicate classes in which a resource may belong. In the context of linked data, key organizational components are the RDF data model, element schemas and value vocabularies, with simple ontologies having minimally defined classes and properties in order to facilitate reuse and interoperability. Simplicity over formal semantics is a tenet of the open-world assumption underlying ontology languages central to the Semantic Web, but the result is a lack of constraints, data quality checks and validation capacity. Inconsistent use of vocabularies and ontologies that do not follow formal semantics rules and logical concept hierarchies further complicate the use of Semantic Web technologies. The Simple Knowledge Organization System (SKOS) helps make existing value vocabularies available in the linked data environment, but it exchanges precision for simplicity. Incompatibilities between simple organized vocabularies, Resource Description Framework Schemas and OWL ontologies and even basic notions of subjects and concepts prevent smooth translations and challenge the conversion of cultural institutions' unique legacy vocabularies for linked data. Adopting the linked data vision requires accepting loose semantic interpretations. To avoid semantic inconsistencies and illogical results, cultural organizations following the linked data path must be careful to choose the level of semantics that best suits their domain and needs.
    Footnote
    Contribution to a special section "Linked data and the charm of weak semantics".
    Type
    a
  5. Vocht, L. De: Exploring semantic relationships in the Web of Data : Semantische relaties verkennen in data op het web (2017) 0.00
    0.0019376777 = product of:
      0.0038753555 = sum of:
        0.0038753555 = product of:
          0.007750711 = sum of:
            0.007750711 = weight(_text_:a in 4232) [ClassicSimilarity], result of:
              0.007750711 = score(doc=4232,freq=42.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14594918 = fieldWeight in 4232, product of:
                  6.4807405 = tf(freq=42.0), with freq of:
                    42.0 = termFreq=42.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=4232)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    After the launch of the World Wide Web, it became clear that searching documentson the Web would not be trivial. Well-known engines to search the web, like Google, focus on search in web documents using keywords. The documents are structured and indexed to ensure keywords match documents as accurately as possible. However, searching by keywords does not always suice. It is oen the case that users do not know exactly how to formulate the search query or which keywords guarantee retrieving the most relevant documents. Besides that, it occurs that users rather want to browse information than looking up something specific. It turned out that there is need for systems that enable more interactivity and facilitate the gradual refinement of search queries to explore the Web. Users expect more from the Web because the short keyword-based queries they pose during search, do not suffice for all cases. On top of that, the Web is changing structurally. The Web comprises, apart from a collection of documents, more and more linked data, pieces of information structured so they can be processed by machines. The consequently applied semantics allow users to exactly indicate machines their search intentions. This is made possible by describing data following controlled vocabularies, concept lists composed by experts, published uniquely identifiable on the Web. Even so, it is still not trivial to explore data on the Web. There is a large variety of vocabularies and various data sources use different terms to identify the same concepts.
    This PhD-thesis describes how to effectively explore linked data on the Web. The main focus is on scenarios where users want to discover relationships between resources rather than finding out more about something specific. Searching for a specific document or piece of information fits in the theoretical framework of information retrieval and is associated with exploratory search. Exploratory search goes beyond 'looking up something' when users are seeking more detailed understanding, further investigation or navigation of the initial search results. The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. Queries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research. Our first technique focuses on the interactive visualization of search results. Linked data resources can be brought in relation with each other at will. This leads to complex and diverse graphs structures. Our technique facilitates navigation and supports a workflow starting from a broad overview on the data and allows narrowing down until the desired level of detail to then broaden again. To validate the flow, two visualizations where implemented and presented to test-users. The users judged the usability of the visualizations, how the visualizations fit in the workflow and to which degree their features seemed useful for the exploration of linked data.
    The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. eries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research.
    Our first technique focuses on the interactive visualization of search results. Linked data resources can be brought in relation with each other at will. This leads to complex and diverse graphs structures. Our technique facilitates navigation and supports a workflow starting from a broad overview on the data and allows narrowing down until the desired level of detail to then broaden again. To validate the flow, two visualizations where implemented and presented to test-users. The users judged the usability of the visualizations, how the visualizations fit in the workflow and to which degree their features seemed useful for the exploration of linked data. There is a difference in the way users interact with resources, visually or textually, and how resources are represented for machines to be processed by algorithms. This difference complicates bridging the users' intents and machine executable queries. It is important to implement this 'translation' mechanism to impact the search as favorable as possible in terms of performance, complexity and accuracy. To do this, we explain a second technique, that supports such a bridging component. Our second technique is developed around three features that support the search process: looking up, relating and ranking resources. The main goal is to ensure that resources in the results are as precise and relevant as possible. During the evaluation of this technique, we did not only look at the precision of the search results but also investigated how the effectiveness of the search evolved while the user executed certain actions sequentially.
    When we speak about finding relationships between resources, it is necessary to dive deeper in the structure. The graph structure of linked data where the semantics give meaning to the relationships between resources enable the execution of pathfinding algorithms. The assigned weights and heuristics are base components of such algorithms and ultimately define (the order) which resources are included in a path. These paths explain indirect connections between resources. Our third technique proposes an algorithm that optimizes the choice of resources in terms of serendipity. Some optimizations guard the consistence of candidate-paths where the coherence of consecutive connections is maximized to avoid trivial and too arbitrary paths. The implementation uses the A* algorithm, the de-facto reference when it comes to heuristically optimized minimal cost paths. The effectiveness of paths was measured based on common automatic metrics and surveys where the users could indicate their preference for paths, generated each time in a different way. Finally, all our techniques are applied to a use case about publications in digital libraries where they are aligned with information about scientific conferences and researchers. The application to this use case is a practical example because the different aspects of exploratory search come together. In fact, the techniques also evolved from the experiences when implementing the use case. Practical details about the semantic model are explained and the implementation of the search system is clarified module by module. The evaluation positions the result, a prototype of a tool to explore scientific publications, researchers and conferences next to some important alternatives.
  6. Stamou, G.; Chortaras, A.: Ontological query answering over semantic data (2017) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 3926) [ClassicSimilarity], result of:
              0.007654148 = score(doc=3926,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 3926, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3926)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  7. Smith, D.A.: Exploratory and faceted browsing over heterogeneous and cross-domain data sources. (2011) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 4839) [ClassicSimilarity], result of:
              0.007030784 = score(doc=4839,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 4839, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4839)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Exploration of heterogeneous data sources increases the value of information by allowing users to answer questions through exploration across multiple sources; Users can use information that has been posted across the Web to answer questions and learn about new domains. We have conducted research that lowers the interrogation time of faceted data, by combining related information from different sources. The work contributes methodologies in combining heterogenous sources, and how to deliver that data to a user interface scalably, with enough performance to support rapid interrogation of the knowledge by the user. The work also contributes how to combine linked data sources so that users can create faceted browsers that target the information facets of their needs. The work is grounded and proven in a number of experiments and test cases that study the contributions in domain research work.
    Footnote
    A thesis submitted in partial fulfillment for the degree of Doctor of Philosophy. June 2011.
  8. Piscitelli, F.A.: Library linked data models : library data in the Semantic Web (2019) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 5478) [ClassicSimilarity], result of:
              0.006765375 = score(doc=5478,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 5478, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5478)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This exploratory study examined Linked Data (LD) schemas/ontologies and data models proposed or in use by libraries around the world using MAchine Readable Cataloging (MARC) as a basis for comparison of the scope and extensibility of these potential new standards. The researchers selected 14 libraries from national libraries, academic libraries, government libraries, public libraries, multi-national libraries, and cultural heritage centers currently developing Library Linked Data (LLD) schemas. The choices of models, schemas, and elements used in each library's LD can create interoperability issues for LD services because of substantial differences between schemas and data models evolving via local decisions. The researchers observed that a wide variety of vocabularies and ontologies were used for LLD including common web schemas such as Dublin Core (DC)/DCTerms, Schema.org and Resource Description Framework (RDF), as well as deprecated schemas such as MarcOnt and rdagroup1elements. A sharp divide existed as well between LLD schemas using variations of the Functional Requirements for Bibliographic Records (FRBR) data model and those with different data models or even with no listed data model. Libraries worldwide are not using the same elements or even the same ontologies, schemas and data models to describe the same materials using the same general concepts.
    Type
    a
  9. Siwecka, D.: Knowledge organization systems used in European national libraries towards interoperability of the semantic Web (2018) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 4815) [ClassicSimilarity], result of:
              0.0054123 = score(doc=4815,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 4815, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4815)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  10. Linked data and user interaction : the road ahead (2015) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 2552) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=2552,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 2552, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2552)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This collection of research papers provides extensive information on deploying services, concepts, and approaches for using open linked data from libraries and other cultural heritage institutions. With a special emphasis on how libraries and other cultural heritage institutions can create effective end user interfaces using open, linked data or other datasets. These papers are essential reading for any one interesting in user interface design or the semantic web.
    Content
    H. Frank Cervone: Linked data and user interaction : an introduction -- Paola Di Maio: Linked Data Beyond Libraries Towards Universal Interfaces and Knowledge Unification -- Emmanuelle Bermes: Following the user's flow in the Digital Pompidou -- Patrick Le Bceuf: Customized OPACs on the Semantic Web : the OpenCat prototype -- Ryan Shaw, Patrick Golden and Michael Buckland: Using linked library data in working research notes -- Timm Heuss, Bernhard Humm.Tilman Deuschel, Torsten Frohlich, Thomas Herth and Oliver Mitesser: Semantically guided, situation-aware literature research -- Niklas Lindstrom and Martin Malmsten: Building interfaces on a networked graph -- Natasha Simons, Arve Solland and Jan Hettenhausen: Griffith Research Hub. Vgl.: http://d-nb.info/1032799889.
  11. Reasoning Web : Semantic Interoperability on the Web, 13th International Summer School 2017, London, UK, July 7-11, 2017, Tutorial Lectures (2017) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 3934) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=3934,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 3934, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3934)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Neumaier, Sebastian (et al.): Data Integration for Open Data on the Web - Stamou, Giorgos (et al.): Ontological Query Answering over Semantic Data - Calì, Andrea: Ontology Querying: Datalog Strikes Back - Sequeda, Juan F.: Integrating Relational Databases with the Semantic Web: A Reflection - Rousset, Marie-Christine (et al.): Datalog Revisited for Reasoning in Linked Data - Kaminski, Roland (et al.): A Tutorial on Hybrid Answer Set Solving with clingo - Eiter, Thomas (et al.): Answer Set Programming with External Source Access - Lukasiewicz, Thomas: Uncertainty Reasoning for the Semantic Web - Calvanese, Diego (et al.): OBDA for Log Extraction in Process Mining
  12. Semantic search over the Web (2012) 0.00
    0.0011717974 = product of:
      0.0023435948 = sum of:
        0.0023435948 = product of:
          0.0046871896 = sum of:
            0.0046871896 = weight(_text_:a in 411) [ClassicSimilarity], result of:
              0.0046871896 = score(doc=411,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.088261776 = fieldWeight in 411, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=411)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Web has become the world's largest database, with search being the main tool that allows organizations and individuals to exploit its huge amount of information. Search on the Web has been traditionally based on textual and structural similarities, ignoring to a large degree the semantic dimension, i.e., understanding the meaning of the query and of the document content. Combining search and semantics gives birth to the idea of semantic search. Traditional search engines have already advertised some semantic dimensions. Some of them, for instance, can enhance their generated result sets with documents that are semantically related to the query terms even though they may not include these terms. Nevertheless, the exploitation of the semantic search has not yet reached its full potential. In this book, Roberto De Virgilio, Francesco Guerra and Yannis Velegrakis present an extensive overview of the work done in Semantic Search and other related areas. They explore different technologies and solutions in depth, making their collection a valuable and stimulating reading for both academic and industrial researchers. The book is divided into three parts. The first introduces the readers to the basic notions of the Web of Data. It describes the different kinds of data that exist, their topology, and their storing and indexing techniques. The second part is dedicated to Web Search. It presents different types of search, like the exploratory or the path-oriented, alongside methods for their efficient and effective implementation. Other related topics included in this part are the use of uncertainty in query answering, the exploitation of ontologies, and the use of semantics in mashup design and operation. The focus of the third part is on linked data, and more specifically, on applying ideas originating in recommender systems on linked data management, and on techniques for the efficiently querying answering on linked data.
    Content
    Inhalt: Introduction.- Part I Introduction to Web of Data.- Topology of the Web of Data.- Storing and Indexing Massive RDF Data Sets.- Designing Exploratory Search Applications upon Web Data Sources.- Part II Search over the Web.- Path-oriented Keyword Search query over RDF.- Interactive Query Construction for Keyword Search on the SemanticWeb.- Understanding the Semantics of Keyword Queries on Relational DataWithout Accessing the Instance.- Keyword-Based Search over Semantic Data.- Semantic Link Discovery over Relational Data.- Embracing Uncertainty in Entity Linking.- The Return of the Entity-Relationship Model: Ontological Query Answering.- Linked Data Services and Semantics-enabled Mashup.- Part III Linked Data Search engines.- A Recommender System for Linked Data.- Flint: from Web Pages to Probabilistic Semantic Data.- Searching and Browsing Linked Data with SWSE.
  13. Sakr, S.; Wylot, M.; Mutharaju, R.; Le-Phuoc, D.; Fundulaki, I.: Linked data : storing, querying, and reasoning (2018) 0.00
    0.0011717974 = product of:
      0.0023435948 = sum of:
        0.0023435948 = product of:
          0.0046871896 = sum of:
            0.0046871896 = weight(_text_:a in 5329) [ClassicSimilarity], result of:
              0.0046871896 = score(doc=5329,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.088261776 = fieldWeight in 5329, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5329)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This book describes efficient and effective techniques for harnessing the power of Linked Data by tackling the various aspects of managing its growing volume: storing, querying, reasoning, provenance management and benchmarking. To this end, Chapter 1 introduces the main concepts of the Semantic Web and Linked Data and provides a roadmap for the book. Next, Chapter 2 briefly presents the basic concepts underpinning Linked Data technologies that are discussed in the book. Chapter 3 then offers an overview of various techniques and systems for centrally querying RDF datasets, and Chapter 4 outlines various techniques and systems for efficiently querying large RDF datasets in distributed environments. Subsequently, Chapter 5 explores how streaming requirements are addressed in current, state-of-the-art RDF stream data processing. Chapter 6 covers performance and scaling issues of distributed RDF reasoning systems, while Chapter 7 details benchmarks for RDF query engines and instance matching systems. Chapter 8 addresses the provenance management for Linked Data and presents the different provenance models developed. Lastly, Chapter 9 offers a brief summary, highlighting and providing insights into some of the open challenges and research directions. Providing an updated overview of methods, technologies and systems related to Linked Data this book is mainly intended for students and researchers who are interested in the Linked Data domain. It enables students to gain an understanding of the foundations and underpinning technologies and standards for Linked Data, while researchers benefit from the in-depth coverage of the emerging and ongoing advances in Linked Data storing, querying, reasoning, and provenance management systems. Further, it serves as a starting point to tackle the next research challenges in the domain of Linked Data management.
  14. Borst, T.: Repositorien auf ihrem Weg in das Semantic Web : semantisch hergeleitete Interoperabilität als Zielstellung für künftige Repository-Entwicklungen (2014) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 1555) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=1555,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 1555, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1555)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  15. Neubauer, G.: Visualization of typed links in linked data (2017) 0.00
    8.4567186E-4 = product of:
      0.0016913437 = sum of:
        0.0016913437 = product of:
          0.0033826875 = sum of:
            0.0033826875 = weight(_text_:a in 3912) [ClassicSimilarity], result of:
              0.0033826875 = score(doc=3912,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.06369744 = fieldWeight in 3912, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3912)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  16. Neumaier, S.: Data integration for open data on the Web (2017) 0.00
    8.4567186E-4 = product of:
      0.0016913437 = sum of:
        0.0016913437 = product of:
          0.0033826875 = sum of:
            0.0033826875 = weight(_text_:a in 3923) [ClassicSimilarity], result of:
              0.0033826875 = score(doc=3923,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.06369744 = fieldWeight in 3923, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3923)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a