Search (23 results, page 1 of 2)

  • × theme_ss:"Semantic Web"
  • × theme_ss:"Wissensrepräsentation"
  • × type_ss:"a"
  • × year_i:[2010 TO 2020}
  1. Prud'hommeaux, E.; Gayo, E.: RDF ventures to boldly meet your most pedestrian needs (2015) 0.02
    0.022235535 = product of:
      0.04447107 = sum of:
        0.04447107 = sum of:
          0.007030784 = weight(_text_:a in 2024) [ClassicSimilarity], result of:
            0.007030784 = score(doc=2024,freq=6.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.13239266 = fieldWeight in 2024, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=2024)
          0.037440285 = weight(_text_:22 in 2024) [ClassicSimilarity], result of:
            0.037440285 = score(doc=2024,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.23214069 = fieldWeight in 2024, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2024)
      0.5 = coord(1/2)
    
    Abstract
    Defined in 1999 and paired with XML, the Resource Description Framework (RDF) has been cast as an RDF Schema, producing data that is well-structured but not validated, permitting certain illogical relationships. When stakeholders convened in 2014 to consider solutions to the data validation challenge, a W3C working group proposed Resource Shapes and Shape Expressions to describe the properties expected for an RDF node. Resistance rose from concerns about data and schema reuse, key principles in RDF. Ideally data types and properties are designed for broad use, but they are increasingly adopted with local restrictions for specific purposes. Resource Shapes are commonly treated as record classes, standing in for data structures but losing flexibility for later reuse. Of various solutions to the resulting tensions, the concept of record classes may be the most reasonable basis for agreement, satisfying stakeholders' objectives while allowing for variations with constraints.
    Footnote
    Contribution to a special section "Linked data and the charm of weak semantics".
    Source
    Bulletin of the Association for Information Science and Technology. 41(2015) no.4, S.18-22
    Type
    a
  2. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.02
    0.018982807 = product of:
      0.037965614 = sum of:
        0.037965614 = sum of:
          0.006765375 = weight(_text_:a in 4553) [ClassicSimilarity], result of:
            0.006765375 = score(doc=4553,freq=8.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.12739488 = fieldWeight in 4553, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4553)
          0.03120024 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
            0.03120024 = score(doc=4553,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.19345059 = fieldWeight in 4553, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4553)
      0.5 = coord(1/2)
    
    Abstract
    Semantic Web knowledge representation standards, and in particular RDF and OWL, often come endowed with a formal semantics which is considered to be of fundamental importance for the field. Reasoning, i.e., the drawing of logical inferences from knowledge expressed in such standards, is traditionally based on logical deductive methods and algorithms which can be proven to be sound and complete and terminating, i.e. correct in a very strong sense. For various reasons, though, in particular the scalability issues arising from the ever increasing amounts of Semantic Web data available and the inability of deductive algorithms to deal with noise in the data, it has been argued that alternative means of reasoning should be investigated which bear high promise for high scalability and better robustness. From this perspective, deductive algorithms can be considered the gold standard regarding correctness against which alternative methods need to be tested. In this paper, we show that it is possible to train a Deep Learning system on RDF knowledge graphs, such that it is able to perform reasoning over new RDF knowledge graphs, with high precision and recall compared to the deductive gold standard.
    Date
    16.11.2018 14:22:01
    Type
    a
  3. Zhitomirsky-Geffet, M.; Bar-Ilan, J.: Towards maximal unification of semantically diverse ontologies for controversial domains (2014) 0.02
    0.017542839 = product of:
      0.035085678 = sum of:
        0.035085678 = sum of:
          0.010125486 = weight(_text_:a in 1634) [ClassicSimilarity], result of:
            0.010125486 = score(doc=1634,freq=28.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.19066721 = fieldWeight in 1634, product of:
                5.2915025 = tf(freq=28.0), with freq of:
                  28.0 = termFreq=28.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.03125 = fieldNorm(doc=1634)
          0.02496019 = weight(_text_:22 in 1634) [ClassicSimilarity], result of:
            0.02496019 = score(doc=1634,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.15476047 = fieldWeight in 1634, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=1634)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - Ontologies are prone to wide semantic variability due to subjective points of view of their composers. The purpose of this paper is to propose a new approach for maximal unification of diverse ontologies for controversial domains by their relations. Design/methodology/approach - Effective matching or unification of multiple ontologies for a specific domain is crucial for the success of many semantic web applications, such as semantic information retrieval and organization, document tagging, summarization and search. To this end, numerous automatic and semi-automatic techniques were proposed in the past decade that attempt to identify similar entities, mostly classes, in diverse ontologies for similar domains. Apparently, matching individual entities cannot result in full integration of ontologies' semantics without matching their inter-relations with all other-related classes (and instances). However, semantic matching of ontological relations still constitutes a major research challenge. Therefore, in this paper the authors propose a new paradigm for assessment of maximal possible matching and unification of ontological relations. To this end, several unification rules for ontological relations were devised based on ontological reference rules, and lexical and textual entailment. These rules were semi-automatically implemented to extend a given ontology with semantically matching relations from another ontology for a similar domain. Then, the ontologies were unified through these similar pairs of relations. The authors observe that these rules can be also facilitated to reveal the contradictory relations in different ontologies. Findings - To assess the feasibility of the approach two experiments were conducted with different sets of multiple personal ontologies on controversial domains constructed by trained subjects. The results for about 50 distinct ontology pairs demonstrate a good potential of the methodology for increasing inter-ontology agreement. Furthermore, the authors show that the presented methodology can lead to a complete unification of multiple semantically heterogeneous ontologies. Research limitations/implications - This is a conceptual study that presents a new approach for semantic unification of ontologies by a devised set of rules along with the initial experimental evidence of its feasibility and effectiveness. However, this methodology has to be fully automatically implemented and tested on a larger dataset in future research. Practical implications - This result has implication for semantic search, since a richer ontology, comprised of multiple aspects and viewpoints of the domain of knowledge, enhances discoverability and improves search results. Originality/value - To the best of the knowledge, this is the first study to examine and assess the maximal level of semantic relation-based ontology unification.
    Date
    20. 1.2015 18:30:22
    Type
    a
  4. Pattuelli, M.C.; Rubinow, S.: Charting DBpedia : towards a cartography of a major linked dataset (2012) 0.00
    0.0029000505 = product of:
      0.005800101 = sum of:
        0.005800101 = product of:
          0.011600202 = sum of:
            0.011600202 = weight(_text_:a in 829) [ClassicSimilarity], result of:
              0.011600202 = score(doc=829,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.21843673 = fieldWeight in 829, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=829)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper provides an analysis of the knowledge structure underlying DBpedia, one of the largest and most heavily used datasets in the current Linked Data landscape. The study reveals an evolving knowledge representation environment where different descriptive and classification approaches are employed concurrently. This analysis opens up a new area of research to which the knowledge organization community can make a significant contribution.
    Source
    Categories, contexts and relations in knowledge organization: Proceedings of the Twelfth International ISKO Conference 6-9 August 2012, Mysore, India. Eds.: Neelameghan, A. u. K.S. Raghavan
    Type
    a
  5. Corcho, O.; Poveda-Villalón, M.; Gómez-Pérez, A.: Ontology engineering in the era of linked data (2015) 0.00
    0.0029000505 = product of:
      0.005800101 = sum of:
        0.005800101 = product of:
          0.011600202 = sum of:
            0.011600202 = weight(_text_:a in 3293) [ClassicSimilarity], result of:
              0.011600202 = score(doc=3293,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.21843673 = fieldWeight in 3293, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3293)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Ontology engineering encompasses the method, tools and techniques used to develop ontologies. Without requiring ontologies, linked data is driving a paradigm shift, bringing benefits and drawbacks to the publishing world. Ontologies may be heavyweight, supporting deep understanding of a domain, or lightweight, suited to simple classification of concepts and more adaptable for linked data. They also vary in domain specificity, usability and reusabilty. Hybrid vocabularies drawing elements from diverse sources often suffer from internally incompatible semantics. To serve linked data purposes, ontology engineering teams require a range of skills in philosophy, computer science, web development, librarianship and domain expertise.
    Footnote
    Contribution to a special section "Linked data and the charm of weak semantics".
    Type
    a
  6. Zhang, L.: Linking information through function (2014) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 1526) [ClassicSimilarity], result of:
              0.011481222 = score(doc=1526,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 1526, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1526)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    How information resources can be meaningfully related has been addressed in contexts from bibliographic entries to hyperlinks and, more recently, linked data. The genre structure and relationships among genre structure constituents shed new light on organizing information by purpose or function. This study examines the relationships among a set of functional units previously constructed in a taxonomy, each of which is a chunk of information embedded in a document and is distinct in terms of its communicative function. Through a card-sort study, relationships among functional units were identified with regard to their occurrence and function. The findings suggest that a group of functional units can be identified, collocated, and navigated by particular relationships. Understanding how functional units are related to each other is significant in linking information pieces in documents to support finding, aggregating, and navigating information in a distributed information environment.
    Type
    a
  7. Lassalle, E.; Lassalle, E.: Semantic models in information retrieval (2012) 0.00
    0.0028047764 = product of:
      0.005609553 = sum of:
        0.005609553 = product of:
          0.011219106 = sum of:
            0.011219106 = weight(_text_:a in 97) [ClassicSimilarity], result of:
              0.011219106 = score(doc=97,freq=22.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.21126054 = fieldWeight in 97, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=97)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Robertson and Spärck Jones pioneered experimental probabilistic models (Binary Independence Model) with both a typology generalizing the Boolean model, a frequency counting to calculate elementary weightings, and their combination into a global probabilistic estimation. However, this model did not consider indexing terms dependencies. An extension to mixture models (e.g., using a 2-Poisson law) made it possible to take into account these dependencies from a macroscopic point of view (BM25), as well as a shallow linguistic processing of co-references. New approaches (language models, for example "bag of words" models, probabilistic dependencies between requests and documents, and consequently Bayesian inference using Dirichlet prior conjugate) furnished new solutions for documents structuring (categorization) and for index smoothing. Presently, in these probabilistic models the main issues have been addressed from a formal point of view only. Thus, linguistic properties are neglected in the indexing language. The authors examine how a linguistic and semantic modeling can be integrated in indexing languages and set up a hybrid model that makes it possible to deal with different information retrieval problems in a unified way.
    Type
    a
  8. Glimm, B.; Hogan, A.; Krötzsch, M.; Polleres, A.: OWL: Yet to arrive on the Web of Data? (2012) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 4798) [ClassicSimilarity], result of:
              0.00994303 = score(doc=4798,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 4798, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4798)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Seven years on from OWL becoming a W3C recommendation, and two years on from the more recent OWL 2 W3C recommendation, OWL has still experienced only patchy uptake on the Web. Although certain OWL features (like owl:sameAs) are very popular, other features of OWL are largely neglected by publishers in the Linked Data world. This may suggest that despite the promise of easy implementations and the proposal of tractable profiles suggested in OWL's second version, there is still no "right" standard fragment for the Linked Data community. In this paper, we (1) analyse uptake of OWL on the Web of Data, (2) gain insights into the OWL fragment that is actually used/usable on the Web, where we arrive at the conclusion that this fragment is likely to be a simplified profile based on OWL RL, (3) propose and discuss such a new fragment, which we call OWL LD (for Linked Data).
    Type
    a
  9. Iorio, A. di; Peroni, S.; Vitali, F.: ¬A Semantic Web approach to everyday overlapping markup (2011) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 4749) [ClassicSimilarity], result of:
              0.00894975 = score(doc=4749,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 4749, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4749)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Overlapping structures in XML are not symptoms of a misunderstanding of the intrinsic characteristics of a text document nor evidence of extreme scholarly requirements far beyond those needed by the most common XML-based applications. On the contrary, overlaps have started to appear in a large number of incredibly popular applications hidden under the guise of syntactical tricks to the basic hierarchy of the XML data format. Unfortunately, syntactical tricks have the drawback that the affected structures require complicated workarounds to support even the simplest query or usage. In this article, we present Extremely Annotational Resource Description Framework (RDF) Markup (EARMARK), an approach to overlapping markup that simplifies and streamlines the management of multiple hierarchies on the same content, and provides an approach to sophisticated queries and usages over such structures without the need of ad-hoc applications, simply by using Semantic Web tools and languages. We compare how relevant tasks (e.g., the identification of the contribution of an author in a word processor document) are of some substantial complexity when using the original data format and become more or less trivial when using EARMARK. We finally evaluate positively the memory and disk requirements of EARMARK documents in comparison to Open Office and Microsoft Word XML-based formats.
    Type
    a
  10. Djioua, B.; Desclés, J.-P.; Alrahabi, M.: Searching and mining with semantic categories (2012) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 99) [ClassicSimilarity], result of:
              0.00894975 = score(doc=99,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 99, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=99)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A new model is proposed to retrieve information by building automatically a semantic metatext structure for texts that allow searching and extracting discourse and semantic information according to certain linguistic categorizations. This paper presents approaches for searching and mining full text with semantic categories. The model is built up from two engines: The first one, called EXCOM (Djioua et al., 2006; Alrahabi, 2010), is an automatic system for text annotation, related to discourse and semantic maps, which are specification of general linguistic ontologies founded on the Applicative and Cognitive Grammar. The annotation layer uses a linguistic method called Contextual Exploration, which handles the polysemic values of a term in texts. Several 'semantic maps' underlying 'point of views' for text mining guide this automatic annotation process. The second engine uses semantic annotated texts, produced previously in order to create a semantic inverted index, which is able to retrieve relevant documents for queries associated with discourse and semantic categories such as definition, quotation, causality, relations between concepts, etc. (Djioua & Desclés, 2007). This semantic indexation process builds a metatext layer for textual contents. Some data and linguistic rules sets as well as the general architecture that extend third-party software are expressed as supplementary information.
    Type
    a
  11. Boer, V. de; Wielemaker, J.; Gent, J. van; Hildebrand, M.; Isaac, A.; Ossenbruggen, J. van; Schreiber, G.: Supporting linked data production for cultural heritage institutes : the Amsterdam Museum case study (2012) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 265) [ClassicSimilarity], result of:
              0.00894975 = score(doc=265,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 265, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=265)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Within the cultural heritage field, proprietary metadata and vocabularies are being transformed into public Linked Data. These efforts have mostly been at the level of large-scale aggregators such as Europeana where the original data is abstracted to a common format and schema. Although this approach ensures a level of consistency and interoperability, the richness of the original data is lost in the process. In this paper, we present a transparent and interactive methodology for ingesting, converting and linking cultural heritage metadata into Linked Data. The methodology is designed to maintain the richness and detail of the original metadata. We introduce the XMLRDF conversion tool and describe how it is integrated in the ClioPatria semantic web toolkit. The methodology and the tools have been validated by converting the Amsterdam Museum metadata to a Linked Data version. In this way, the Amsterdam Museum became the first 'small' cultural heritage institution with a node in the Linked Data cloud.
    Type
    a
  12. Manaf, N.A. Abdul; Bechhofer, S.; Stevens, R.: ¬The current state of SKOS vocabularies on the Web (2012) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 266) [ClassicSimilarity], result of:
              0.00894975 = score(doc=266,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 266, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=266)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We present a survey of the current state of Simple Knowledge Organization System (SKOS) vocabularies on the Web. Candidate vocabularies were gathered through collections and web crawling, with 478 identified as complying to a given definition of a SKOS vocabulary. Analyses were then conducted that included investigation of the use of SKOS constructs; the use of SKOS semantic relations and lexical labels; and the structure of vocabularies in terms of the hierarchical and associative relations, branching factors and the depth of the vocabularies. Even though SKOS concepts are considered to be the core of SKOS vocabularies, our findings were that not all SKOS vocabularies published explicitly declared SKOS concepts in the vocabularies. Almost one-third of th SKOS vocabularies collected fall into the category of term lists, with no use of any SKOS semantic relations. As concept labelling is core to SKOS vocabularies, a surprising find is that not all SKOS vocabularies use SKOS lexical labels, whether skos:prefLabel or skos:altLabel, for their concepts. The branching factors and maximum depth of the vocabularies have no direct relationship to the size of the vocabularies. We also observed some common modelling slips found in SKOS vocabularies. The survey is useful when considering, for example, converting artefacts such as OWL ontologies into SKOS, where a definition of typicality of SKOS vocabularies could be used to guide the conversion. Moreover, the survey results can serve to provide a better understanding of the modelling styles of the SKOS vocabularies published on the Web, especially when considering the creation of applications that utilize these vocabularies.
    Type
    a
  13. Gómez-Pérez, A.; Corcho, O.: Ontology languages for the Semantic Web (2015) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 3297) [ClassicSimilarity], result of:
              0.00894975 = score(doc=3297,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 3297, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3297)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Ontologies have proven to be an essential element in many applications. They are used in agent systems, knowledge management systems, and e-commerce platforms. They can also generate natural language, integrate intelligent information, provide semantic-based access to the Internet, and extract information from texts in addition to being used in many other applications to explicitly declare the knowledge embedded in them. However, not only are ontologies useful for applications in which knowledge plays a key role, but they can also trigger a major change in current Web contents. This change is leading to the third generation of the Web-known as the Semantic Web-which has been defined as "the conceptual structuring of the Web in an explicit machine-readable way."1 This definition does not differ too much from the one used for defining an ontology: "An ontology is an explicit, machinereadable specification of a shared conceptualization."2 In fact, new ontology-based applications and knowledge architectures are developing for this new Web. A common claim for all of these approaches is the need for languages to represent the semantic information that this Web requires-solving the heterogeneous data exchange in this heterogeneous environment. Here, we don't decide which language is best of the Semantic Web. Rather, our goal is to help developers find the most suitable language for their representation needs. The authors analyze the most representative ontology languages created for the Web and compare them using a common framework.
    Type
    a
  14. Menzel, C.: Knowledge representation, the World Wide Web, and the evolution of logic (2011) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 761) [ClassicSimilarity], result of:
              0.008118451 = score(doc=761,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 761, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=761)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this paper, I have traced a series of evolutionary adaptations of FOL motivated entirely by its use by knowledge engineers to represent and share information on the Web culminating in the development of Common Logic. While the primary goal in this paper has been to document this evolution, it is arguable, I think that CL's syntactic and semantic egalitarianism better realizes the goal "topic neutrality" that a logic should ideally exemplify - understood, at least in part, as the idea that logic should as far as possible not itself embody any metaphysical presuppositions. Instead of retaining the traditional metaphysical divisions of FOL that reflect its Fregean origins, CL begins as it were with a single, metaphysically homogeneous domain in which, potentially, anything can play the traditional roles of object, property, relation, and function. Note that the effect of this is not to destroy traditional metaphysical divisions. Rather, it simply to refrain from building those divisions explicitly into one's logic; instead, such divisions are left to the user to introduce and enforce axiomatically in an explicit metaphysical theory.
    Type
    a
  15. Kara, S.: ¬An ontology-based retrieval system using semantic indexing (2012) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 3829) [ClassicSimilarity], result of:
              0.008118451 = score(doc=3829,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 3829, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3829)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this thesis, we present an ontology-based information extraction and retrieval system and its application to soccer domain. In general, we deal with three issues in semantic search, namely, usability, scalability and retrieval performance. We propose a keyword-based semantic retrieval approach. The performance of the system is improved considerably using domain-specific information extraction, inference and rules. Scalability is achieved by adapting a semantic indexing approach. The system is implemented using the state-of-the-art technologies in SemanticWeb and its performance is evaluated against traditional systems as well as the query expansion methods. Furthermore, a detailed evaluation is provided to observe the performance gain due to domain-specific information extraction and inference. Finally, we show how we use semantic indexing to solve simple structural ambiguities.
    Type
    a
  16. Allocca, C.; Aquin, M.d'; Motta, E.: Impact of using relationships between ontologies to enhance the ontology search results (2012) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 264) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=264,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 264, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=264)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Using semantic web search engines, such as Watson, Swoogle or Sindice, to find ontologies is a complex exploratory activity. It generally requires formulating multiple queries, browsing pages of results, and assessing the returned ontologies against each other to obtain a relevant and adequate subset of ontologies for the intended use. Our hypothesis is that at least some of the difficulties related to searching ontologies stem from the lack of structure in the search results, where ontologies that are implicitly related to each other are presented as disconnected and shown on different result pages. In earlier publications we presented a software framework, Kannel, which is able to automatically detect and make explicit relationships between ontologies in large ontology repositories. In this paper, we present a study that compares the use of the Watson ontology search engine with an extension,Watson+Kannel, which provides information regarding the various relationships occurring between the result ontologies. We evaluate Watson+Kannel by demonstrating through various indicators that explicit relationships between ontologies improve users' efficiency in ontology search, thus validating our hypothesis.
    Type
    a
  17. Smith, D.A.; Shadbolt, N.R.: FacetOntology : expressive descriptions of facets in the Semantic Web (2012) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 2208) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=2208,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 2208, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2208)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The formal structure of the information on the Semantic Web lends itself to faceted browsing, an information retrieval method where users can filter results based on the values of properties ("facets"). Numerous faceted browsers have been created to browse RDF and Linked Data, but these systems use their own ontologies for defining how data is queried to populate their facets. Since the source data is the same format across these systems (specifically, RDF), we can unify the different methods of describing how to quer the underlying data, to enable compatibility across systems, and provide an extensible base ontology for future systems. To this end, we present FacetOntology, an ontology that defines how to query data to form a faceted browser, and a number of transformations and filters that can be applied to data before it is shown to users. FacetOntology overcomes limitations in the expressivity of existing work, by enabling the full expressivity of SPARQL when selecting data for facets. By applying a FacetOntology definition to data, a set of facets are specified, each with queries and filters to source RDF data, which enables faceted browsing systems to be created using that RDF data.
    Type
    a
  18. Rousset, M.-C.; Atencia, M.; David, J.; Jouanot, F.; Ulliana, F.; Palombi, O.: Datalog revisited for reasoning in linked data (2017) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 3936) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=3936,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 3936, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3936)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Linked Data provides access to huge, continuously growing amounts of open data and ontologies in RDF format that describe entities, links and properties on those entities. Equipping Linked Data with inference paves the way to make the Semantic Web a reality. In this survey, we describe a unifying framework for RDF ontologies and databases that we call deductive RDF triplestores. It consists in equipping RDF triplestores with Datalog inference rules. This rule language allows to capture in a uniform manner OWL constraints that are useful in practice, such as property transitivity or symmetry, but also domain-specific rules with practical relevance for users in many domains of interest. The expressivity and the genericity of this framework is illustrated for modeling Linked Data applications and for developing inference algorithms. In particular, we show how it allows to model the problem of data linkage in Linked Data as a reasoning problem on possibly decentralized data. We also explain how it makes possible to efficiently extract expressive modules from Semantic Web ontologies and databases with formal guarantees, whilst effectively controlling their succinctness. Experiments conducted on real-world datasets have demonstrated the feasibility of this approach and its usefulness in practice for data integration and information extraction.
    Type
    a
  19. Fernández, M.; Cantador, I.; López, V.; Vallet, D.; Castells, P.; Motta, E.: Semantically enhanced Information Retrieval : an ontology-based approach (2011) 0.00
    0.0016571716 = product of:
      0.0033143433 = sum of:
        0.0033143433 = product of:
          0.0066286866 = sum of:
            0.0066286866 = weight(_text_:a in 230) [ClassicSimilarity], result of:
              0.0066286866 = score(doc=230,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12482099 = fieldWeight in 230, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=230)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Currently, techniques for content description and query processing in Information Retrieval (IR) are based on keywords, and therefore provide limited capabilities to capture the conceptualizations associated with user needs and contents. Aiming to solve the limitations of keyword-based models, the idea of conceptual search, understood as searching by meanings rather than literal strings, has been the focus of a wide body of research in the IR field. More recently, it has been used as a prototypical scenario (or even envisioned as a potential "killer app") in the Semantic Web (SW) vision, since its emergence in the late nineties. However, current approaches to semantic search developed in the SW area have not yet taken full advantage of the acquired knowledge, accumulated experience, and technological sophistication achieved through several decades of work in the IR field. Starting from this position, this work investigates the definition of an ontology-based IR model, oriented to the exploitation of domain Knowledge Bases to support semantic search capabilities in large document repositories, stressing on the one hand the use of fully fledged ontologies in the semantic-based perspective, and on the other hand the consideration of unstructured content as the target search space. The major contribution of this work is an innovative, comprehensive semantic search model, which extends the classic IR model, addresses the challenges of the massive and heterogeneous Web environment, and integrates the benefits of both keyword and semantic-based search. Additional contributions include: an innovative rank fusion technique that minimizes the undesired effects of knowledge sparseness on the yet juvenile SW, and the creation of a large-scale evaluation benchmark, based on TREC IR evaluation standards, which allows a rigorous comparison between IR and SW approaches. Conducted experiments show that our semantic search model obtained comparable and better performance results (in terms of MAP and P@10 values) than the best TREC automatic system.
    Type
    a
  20. Guns, R.: Tracing the origins of the semantic web (2013) 0.00
    0.0014647468 = product of:
      0.0029294936 = sum of:
        0.0029294936 = product of:
          0.005858987 = sum of:
            0.005858987 = weight(_text_:a in 1093) [ClassicSimilarity], result of:
              0.005858987 = score(doc=1093,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.11032722 = fieldWeight in 1093, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1093)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Semantic Web has been criticized for not being semantic. This article examines the questions of why and how the Web of Data, expressed in the Resource Description Framework (RDF), has come to be known as the Semantic Web. Contrary to previous papers, we deliberately take a descriptive stance and do not start from preconceived ideas about the nature of semantics. Instead, we mainly base our analysis on early design documents of the (Semantic) Web. The main determining factor is shown to be link typing, coupled with the influence of online metadata. Both factors already were present in early web standards and drafts. Our findings indicate that the Semantic Web is directly linked to older artificial intelligence work, despite occasional claims to the contrary. Because of link typing, the Semantic Web can be considered an example of a semantic network. Originally network representations of the meaning of natural language utterances, semantic networks have eventually come to refer to any networks with typed (usually directed) links. We discuss possible causes for this shift and suggest that it may be due to confounding paradigmatic and syntagmatic semantic relations.
    Type
    a