Search (55 results, page 1 of 3)

  • × theme_ss:"Semantic Web"
  • × theme_ss:"Wissensrepräsentation"
  • × type_ss:"a"
  1. Synak, M.; Dabrowski, M.; Kruk, S.R.: Semantic Web and ontologies (2009) 0.03
    0.02766634 = product of:
      0.05533268 = sum of:
        0.05533268 = sum of:
          0.0054123 = weight(_text_:a in 3376) [ClassicSimilarity], result of:
            0.0054123 = score(doc=3376,freq=2.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.10191591 = fieldWeight in 3376, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0625 = fieldNorm(doc=3376)
          0.04992038 = weight(_text_:22 in 3376) [ClassicSimilarity], result of:
            0.04992038 = score(doc=3376,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.30952093 = fieldWeight in 3376, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=3376)
      0.5 = coord(1/2)
    
    Date
    31. 7.2010 16:58:22
    Type
    a
  2. Gendt, M. van; Isaac, I.; Meij, L. van der; Schlobach, S.: Semantic Web techniques for multiple views on heterogeneous collections : a case study (2006) 0.02
    0.022779368 = product of:
      0.045558736 = sum of:
        0.045558736 = sum of:
          0.008118451 = weight(_text_:a in 2418) [ClassicSimilarity], result of:
            0.008118451 = score(doc=2418,freq=8.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.15287387 = fieldWeight in 2418, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=2418)
          0.037440285 = weight(_text_:22 in 2418) [ClassicSimilarity], result of:
            0.037440285 = score(doc=2418,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.23214069 = fieldWeight in 2418, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2418)
      0.5 = coord(1/2)
    
    Abstract
    Integrated digital access to multiple collections is a prominent issue for many Cultural Heritage institutions. The metadata describing diverse collections must be interoperable, which requires aligning the controlled vocabularies that are used to annotate objects from these collections. In this paper, we present an experiment where we match the vocabularies of two collections by applying the Knowledge Representation techniques established in recent Semantic Web research. We discuss the steps that are required for such matching, namely formalising the initial resources using Semantic Web languages, and running ontology mapping tools on the resulting representations. In addition, we present a prototype that enables the user to browse the two collections using the obtained alignment while still providing her with the original vocabulary structures.
    Source
    Research and advanced technology for digital libraries : 10th European conference, proceedings / ECDL 2006, Alicante, Spain, September 17 - 22, 2006
    Type
    a
  3. Prud'hommeaux, E.; Gayo, E.: RDF ventures to boldly meet your most pedestrian needs (2015) 0.02
    0.022235535 = product of:
      0.04447107 = sum of:
        0.04447107 = sum of:
          0.007030784 = weight(_text_:a in 2024) [ClassicSimilarity], result of:
            0.007030784 = score(doc=2024,freq=6.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.13239266 = fieldWeight in 2024, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=2024)
          0.037440285 = weight(_text_:22 in 2024) [ClassicSimilarity], result of:
            0.037440285 = score(doc=2024,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.23214069 = fieldWeight in 2024, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2024)
      0.5 = coord(1/2)
    
    Abstract
    Defined in 1999 and paired with XML, the Resource Description Framework (RDF) has been cast as an RDF Schema, producing data that is well-structured but not validated, permitting certain illogical relationships. When stakeholders convened in 2014 to consider solutions to the data validation challenge, a W3C working group proposed Resource Shapes and Shape Expressions to describe the properties expected for an RDF node. Resistance rose from concerns about data and schema reuse, key principles in RDF. Ideally data types and properties are designed for broad use, but they are increasingly adopted with local restrictions for specific purposes. Resource Shapes are commonly treated as record classes, standing in for data structures but losing flexibility for later reuse. Of various solutions to the resulting tensions, the concept of record classes may be the most reasonable basis for agreement, satisfying stakeholders' objectives while allowing for variations with constraints.
    Footnote
    Contribution to a special section "Linked data and the charm of weak semantics".
    Source
    Bulletin of the Association for Information Science and Technology. 41(2015) no.4, S.18-22
    Type
    a
  4. Zeng, M.L.; Fan, W.; Lin, X.: SKOS for an integrated vocabulary structure (2008) 0.02
    0.021708746 = product of:
      0.04341749 = sum of:
        0.04341749 = sum of:
          0.008118451 = weight(_text_:a in 2654) [ClassicSimilarity], result of:
            0.008118451 = score(doc=2654,freq=18.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.15287387 = fieldWeight in 2654, product of:
                4.2426405 = tf(freq=18.0), with freq of:
                  18.0 = termFreq=18.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.03125 = fieldNorm(doc=2654)
          0.03529904 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
            0.03529904 = score(doc=2654,freq=4.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.21886435 = fieldWeight in 2654, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2654)
      0.5 = coord(1/2)
    
    Abstract
    In order to transfer the Chinese Classified Thesaurus (CCT) into a machine-processable format and provide CCT-based Web services, a pilot study has been conducted in which a variety of selected CCT classes and mapped thesaurus entries are encoded with SKOS. OWL and RDFS are also used to encode the same contents for the purposes of feasibility and cost-benefit comparison. CCT is a collected effort led by the National Library of China. It is an integration of the national standards Chinese Library Classification (CLC) 4th edition and Chinese Thesaurus (CT). As a manually created mapping product, CCT provides for each of the classes the corresponding thesaurus terms, and vice versa. The coverage of CCT includes four major clusters: philosophy, social sciences and humanities, natural sciences and technologies, and general works. There are 22 main-classes, 52,992 sub-classes and divisions, 110,837 preferred thesaurus terms, 35,690 entry terms (non-preferred terms), and 59,738 pre-coordinated headings (Chinese Classified Thesaurus, 2005) Major challenges of encoding this large vocabulary comes from its integrated structure. CCT is a result of the combination of two structures (illustrated in Figure 1): a thesaurus that uses ISO-2788 standardized structure and a classification scheme that is basically enumerative, but provides some flexibility for several kinds of synthetic mechanisms Other challenges include the complex relationships caused by differences of granularities of two original schemes and their presentation with various levels of SKOS elements; as well as the diverse coordination of entries due to the use of auxiliary tables and pre-coordinated headings derived from combining classes, subdivisions, and thesaurus terms, which do not correspond to existing unique identifiers. The poster reports the progress, shares the sample SKOS entries, and summarizes problems identified during the SKOS encoding process. Although OWL Lite and OWL Full provide richer expressiveness, the cost-benefit issues and the final purposes of encoding CCT raise questions of using such approaches.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
    Type
    a
  5. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.02
    0.018982807 = product of:
      0.037965614 = sum of:
        0.037965614 = sum of:
          0.006765375 = weight(_text_:a in 4553) [ClassicSimilarity], result of:
            0.006765375 = score(doc=4553,freq=8.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.12739488 = fieldWeight in 4553, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4553)
          0.03120024 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
            0.03120024 = score(doc=4553,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.19345059 = fieldWeight in 4553, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4553)
      0.5 = coord(1/2)
    
    Abstract
    Semantic Web knowledge representation standards, and in particular RDF and OWL, often come endowed with a formal semantics which is considered to be of fundamental importance for the field. Reasoning, i.e., the drawing of logical inferences from knowledge expressed in such standards, is traditionally based on logical deductive methods and algorithms which can be proven to be sound and complete and terminating, i.e. correct in a very strong sense. For various reasons, though, in particular the scalability issues arising from the ever increasing amounts of Semantic Web data available and the inability of deductive algorithms to deal with noise in the data, it has been argued that alternative means of reasoning should be investigated which bear high promise for high scalability and better robustness. From this perspective, deductive algorithms can be considered the gold standard regarding correctness against which alternative methods need to be tested. In this paper, we show that it is possible to train a Deep Learning system on RDF knowledge graphs, such that it is able to perform reasoning over new RDF knowledge graphs, with high precision and recall compared to the deductive gold standard.
    Date
    16.11.2018 14:22:01
    Type
    a
  6. Zhitomirsky-Geffet, M.; Bar-Ilan, J.: Towards maximal unification of semantically diverse ontologies for controversial domains (2014) 0.02
    0.017542839 = product of:
      0.035085678 = sum of:
        0.035085678 = sum of:
          0.010125486 = weight(_text_:a in 1634) [ClassicSimilarity], result of:
            0.010125486 = score(doc=1634,freq=28.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.19066721 = fieldWeight in 1634, product of:
                5.2915025 = tf(freq=28.0), with freq of:
                  28.0 = termFreq=28.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.03125 = fieldNorm(doc=1634)
          0.02496019 = weight(_text_:22 in 1634) [ClassicSimilarity], result of:
            0.02496019 = score(doc=1634,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.15476047 = fieldWeight in 1634, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=1634)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - Ontologies are prone to wide semantic variability due to subjective points of view of their composers. The purpose of this paper is to propose a new approach for maximal unification of diverse ontologies for controversial domains by their relations. Design/methodology/approach - Effective matching or unification of multiple ontologies for a specific domain is crucial for the success of many semantic web applications, such as semantic information retrieval and organization, document tagging, summarization and search. To this end, numerous automatic and semi-automatic techniques were proposed in the past decade that attempt to identify similar entities, mostly classes, in diverse ontologies for similar domains. Apparently, matching individual entities cannot result in full integration of ontologies' semantics without matching their inter-relations with all other-related classes (and instances). However, semantic matching of ontological relations still constitutes a major research challenge. Therefore, in this paper the authors propose a new paradigm for assessment of maximal possible matching and unification of ontological relations. To this end, several unification rules for ontological relations were devised based on ontological reference rules, and lexical and textual entailment. These rules were semi-automatically implemented to extend a given ontology with semantically matching relations from another ontology for a similar domain. Then, the ontologies were unified through these similar pairs of relations. The authors observe that these rules can be also facilitated to reveal the contradictory relations in different ontologies. Findings - To assess the feasibility of the approach two experiments were conducted with different sets of multiple personal ontologies on controversial domains constructed by trained subjects. The results for about 50 distinct ontology pairs demonstrate a good potential of the methodology for increasing inter-ontology agreement. Furthermore, the authors show that the presented methodology can lead to a complete unification of multiple semantically heterogeneous ontologies. Research limitations/implications - This is a conceptual study that presents a new approach for semantic unification of ontologies by a devised set of rules along with the initial experimental evidence of its feasibility and effectiveness. However, this methodology has to be fully automatically implemented and tested on a larger dataset in future research. Practical implications - This result has implication for semantic search, since a richer ontology, comprised of multiple aspects and viewpoints of the domain of knowledge, enhances discoverability and improves search results. Originality/value - To the best of the knowledge, this is the first study to examine and assess the maximal level of semantic relation-based ontology unification.
    Date
    20. 1.2015 18:30:22
    Type
    a
  7. Pattuelli, M.C.; Rubinow, S.: Charting DBpedia : towards a cartography of a major linked dataset (2012) 0.00
    0.0029000505 = product of:
      0.005800101 = sum of:
        0.005800101 = product of:
          0.011600202 = sum of:
            0.011600202 = weight(_text_:a in 829) [ClassicSimilarity], result of:
              0.011600202 = score(doc=829,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.21843673 = fieldWeight in 829, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=829)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper provides an analysis of the knowledge structure underlying DBpedia, one of the largest and most heavily used datasets in the current Linked Data landscape. The study reveals an evolving knowledge representation environment where different descriptive and classification approaches are employed concurrently. This analysis opens up a new area of research to which the knowledge organization community can make a significant contribution.
    Source
    Categories, contexts and relations in knowledge organization: Proceedings of the Twelfth International ISKO Conference 6-9 August 2012, Mysore, India. Eds.: Neelameghan, A. u. K.S. Raghavan
    Type
    a
  8. Corcho, O.; Poveda-Villalón, M.; Gómez-Pérez, A.: Ontology engineering in the era of linked data (2015) 0.00
    0.0029000505 = product of:
      0.005800101 = sum of:
        0.005800101 = product of:
          0.011600202 = sum of:
            0.011600202 = weight(_text_:a in 3293) [ClassicSimilarity], result of:
              0.011600202 = score(doc=3293,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.21843673 = fieldWeight in 3293, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3293)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Ontology engineering encompasses the method, tools and techniques used to develop ontologies. Without requiring ontologies, linked data is driving a paradigm shift, bringing benefits and drawbacks to the publishing world. Ontologies may be heavyweight, supporting deep understanding of a domain, or lightweight, suited to simple classification of concepts and more adaptable for linked data. They also vary in domain specificity, usability and reusabilty. Hybrid vocabularies drawing elements from diverse sources often suffer from internally incompatible semantics. To serve linked data purposes, ontology engineering teams require a range of skills in philosophy, computer science, web development, librarianship and domain expertise.
    Footnote
    Contribution to a special section "Linked data and the charm of weak semantics".
    Type
    a
  9. Suchanek, F.M.; Kasneci, G.; Weikum, G.: YAGO: a large ontology from Wikipedia and WordNet (2008) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 3404) [ClassicSimilarity], result of:
              0.011481222 = score(doc=3404,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 3404, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3404)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article presents YAGO, a large ontology with high coverage and precision. YAGO has been automatically derived from Wikipedia and WordNet. It comprises entities and relations, and currently contains more than 1.7 million entities and 15 million facts. These include the taxonomic Is-A hierarchy as well as semantic relations between entities. The facts for YAGO have been extracted from the category system and the infoboxes of Wikipedia and have been combined with taxonomic relations from WordNet. Type checking techniques help us keep YAGO's precision at 95%-as proven by an extensive evaluation study. YAGO is based on a clean logical model with a decidable consistency. Furthermore, it allows representing n-ary relations in a natural way while maintaining compatibility with RDFS. A powerful query model facilitates access to YAGO's data.
    Type
    a
  10. Zhang, L.: Linking information through function (2014) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 1526) [ClassicSimilarity], result of:
              0.011481222 = score(doc=1526,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 1526, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1526)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    How information resources can be meaningfully related has been addressed in contexts from bibliographic entries to hyperlinks and, more recently, linked data. The genre structure and relationships among genre structure constituents shed new light on organizing information by purpose or function. This study examines the relationships among a set of functional units previously constructed in a taxonomy, each of which is a chunk of information embedded in a document and is distinct in terms of its communicative function. Through a card-sort study, relationships among functional units were identified with regard to their occurrence and function. The findings suggest that a group of functional units can be identified, collocated, and navigated by particular relationships. Understanding how functional units are related to each other is significant in linking information pieces in documents to support finding, aggregating, and navigating information in a distributed information environment.
    Type
    a
  11. Lassalle, E.; Lassalle, E.: Semantic models in information retrieval (2012) 0.00
    0.0028047764 = product of:
      0.005609553 = sum of:
        0.005609553 = product of:
          0.011219106 = sum of:
            0.011219106 = weight(_text_:a in 97) [ClassicSimilarity], result of:
              0.011219106 = score(doc=97,freq=22.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.21126054 = fieldWeight in 97, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=97)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Robertson and Spärck Jones pioneered experimental probabilistic models (Binary Independence Model) with both a typology generalizing the Boolean model, a frequency counting to calculate elementary weightings, and their combination into a global probabilistic estimation. However, this model did not consider indexing terms dependencies. An extension to mixture models (e.g., using a 2-Poisson law) made it possible to take into account these dependencies from a macroscopic point of view (BM25), as well as a shallow linguistic processing of co-references. New approaches (language models, for example "bag of words" models, probabilistic dependencies between requests and documents, and consequently Bayesian inference using Dirichlet prior conjugate) furnished new solutions for documents structuring (categorization) and for index smoothing. Presently, in these probabilistic models the main issues have been addressed from a formal point of view only. Thus, linguistic properties are neglected in the indexing language. The authors examine how a linguistic and semantic modeling can be integrated in indexing languages and set up a hybrid model that makes it possible to deal with different information retrieval problems in a unified way.
    Type
    a
  12. Miles, A.; Pérez-Agüera, J.R.: SKOS: Simple Knowledge Organisation for the Web (2006) 0.00
    0.0026473717 = product of:
      0.0052947435 = sum of:
        0.0052947435 = product of:
          0.010589487 = sum of:
            0.010589487 = weight(_text_:a in 504) [ClassicSimilarity], result of:
              0.010589487 = score(doc=504,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19940455 = fieldWeight in 504, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=504)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article introduces the Simple Knowledge Organisation System (SKOS), a Semantic Web language for representing controlled structured vocabularies, including thesauri, classification schemes, subject heading systems and taxonomies. SKOS provides a framework for publishing thesauri, classification schemes, and subject indexes on the Web, and for applying these systems to resource collections that are part of the SemanticWeb. SemanticWeb applications may harvest and merge SKOS data, to integrate and enhances retrieval service across multiple collections (e.g. libraries). This article also describes some alternatives for integrating Semantic Web services based on the Resource Description Framework (RDF) and SKOS into a distributed enterprise architecture.
    Type
    a
  13. Kiryakov, A.; Popov, B.; Terziev, I.; Manov, D.; Ognyanoff, D.: Semantic annotation, indexing, and retrieval (2004) 0.00
    0.0026202186 = product of:
      0.005240437 = sum of:
        0.005240437 = product of:
          0.010480874 = sum of:
            0.010480874 = weight(_text_:a in 700) [ClassicSimilarity], result of:
              0.010480874 = score(doc=700,freq=30.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19735932 = fieldWeight in 700, product of:
                  5.477226 = tf(freq=30.0), with freq of:
                    30.0 = termFreq=30.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=700)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Semantic Web realization depends on the availability of a critical mass of metadata for the web content, associated with the respective formal knowledge about the world. We claim that the Semantic Web, at its current stage of development, is in a state of a critical need of metadata generation and usage schemata that are specific, well-defined and easy to understand. This paper introduces our vision for a holistic architecture for semantic annotation, indexing, and retrieval of documents with regard to extensive semantic repositories. A system (called KIM), implementing this concept, is presented in brief and it is used for the purposes of evaluation and demonstration. A particular schema for semantic annotation with respect to real-world entities is proposed. The underlying philosophy is that a practical semantic annotation is impossible without some particular knowledge modelling commitments. Our understanding is that a system for such semantic annotation should be based upon a simple model of real-world entity classes, complemented with extensive instance knowledge. To ensure the efficiency, ease of sharing, and reusability of the metadata, we introduce an upper-level ontology (of about 250 classes and 100 properties), which starts with some basic philosophical distinctions and then goes down to the most common entity types (people, companies, cities, etc.). Thus it encodes many of the domain-independent commonsense concepts and allows straightforward domain-specific extensions. On the basis of the ontology, a large-scale knowledge base of entity descriptions is bootstrapped, and further extended and maintained. Currently, the knowledge bases usually scales between 105 and 106 descriptions. Finally, this paper presents a semantically enhanced information extraction system, which provides automatic semantic annotation with references to classes in the ontology and to instances. The system has been running over a continuously growing document collection (currently about 0.5 million news articles), so it has been under constant testing and evaluation for some time now. On the basis of these semantic annotations, we perform semantic based indexing and retrieval where users can mix traditional information retrieval (IR) queries and ontology-based ones. We argue that such large-scale, fully automatic methods are essential for the transformation of the current largely textual web into a Semantic Web.
    Type
    a
  14. Davies, J.; Duke, A.; Stonkus, A.: OntoShare: evolving ontologies in a knowledge sharing system (2004) 0.00
    0.0025115174 = product of:
      0.0050230348 = sum of:
        0.0050230348 = product of:
          0.0100460695 = sum of:
            0.0100460695 = weight(_text_:a in 4409) [ClassicSimilarity], result of:
              0.0100460695 = score(doc=4409,freq=36.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18917176 = fieldWeight in 4409, product of:
                  6.0 = tf(freq=36.0), with freq of:
                    36.0 = termFreq=36.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4409)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We saw in the introduction how the Semantic Web makes possible a new generation of knowledge management tools. We now turn our attention more specifically to Semantic Web based support for virtual communities of practice. The notion of communities of practice has attracted much attention in the field of knowledge management. Communities of practice are groups within (or sometimes across) organizations who share a common set of information needs or problems. They are typically not a formal organizational unit but an informal network, each sharing in part a common agenda and shared interests or issues. In one example it was found that a lot of knowledge sharing among copier engineers took place through informal exchanges, often around a water cooler. As well as local, geographically based communities, trends towards flexible working and globalisation have led to interest in supporting dispersed communities using Internet technology. The challenge for organizations is to support such communities and make them effective. Provided with an ontology meeting the needs of a particular community of practice, knowledge management tools can arrange knowledge assets into the predefined conceptual classes of the ontology, allowing more natural and intuitive access to knowledge. Knowledge management tools must give users the ability to organize information into a controllable asset. Building an intranet-based store of information is not sufficient for knowledge management; the relationships within the stored information are vital. These relationships cover such diverse issues as relative importance, context, sequence, significance, causality and association. The potential for knowledge management tools is vast; not only can they make better use of the raw information already available, but they can sift, abstract and help to share new information, and present it to users in new and compelling ways.
    In this chapter, we describe the OntoShare system which facilitates and encourages the sharing of information between communities of practice within (or perhaps across) organizations and which encourages people - who may not previously have known of each other's existence in a large organization - to make contact where there are mutual concerns or interests. As users contribute information to the community, a knowledge resource annotated with meta-data is created. Ontologies defined using the resource description framework (RDF) and RDF Schema (RDFS) are used in this process. RDF is a W3C recommendation for the formulation of meta-data for WWW resources. RDF(S) extends this standard with the means to specify domain vocabulary and object structures - that is, concepts and the relationships that hold between them. In the next section, we describe in detail the way in which OntoShare can be used to share and retrieve knowledge and how that knowledge is represented in an RDF-based ontology. We then proceed to discuss in Section 10.3 how the ontologies in OntoShare evolve over time based on user interaction with the system and motivate our approach to user-based creation of RDF-annotated information resources. The way in which OntoShare can help to locate expertise within an organization is then described, followed by a discussion of the sociotechnical issues of deploying such a tool. Finally, a planned evaluation exercise and avenues for further research are outlined.
    Type
    a
  15. Glimm, B.; Hogan, A.; Krötzsch, M.; Polleres, A.: OWL: Yet to arrive on the Web of Data? (2012) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 4798) [ClassicSimilarity], result of:
              0.00994303 = score(doc=4798,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 4798, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4798)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Seven years on from OWL becoming a W3C recommendation, and two years on from the more recent OWL 2 W3C recommendation, OWL has still experienced only patchy uptake on the Web. Although certain OWL features (like owl:sameAs) are very popular, other features of OWL are largely neglected by publishers in the Linked Data world. This may suggest that despite the promise of easy implementations and the proposal of tractable profiles suggested in OWL's second version, there is still no "right" standard fragment for the Linked Data community. In this paper, we (1) analyse uptake of OWL on the Web of Data, (2) gain insights into the OWL fragment that is actually used/usable on the Web, where we arrive at the conclusion that this fragment is likely to be a simplified profile based on OWL RL, (3) propose and discuss such a new fragment, which we call OWL LD (for Linked Data).
    Type
    a
  16. Veltman, K.H.: Towards a Semantic Web for culture 0.00
    0.0024392908 = product of:
      0.0048785815 = sum of:
        0.0048785815 = product of:
          0.009757163 = sum of:
            0.009757163 = weight(_text_:a in 4040) [ClassicSimilarity], result of:
              0.009757163 = score(doc=4040,freq=26.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18373153 = fieldWeight in 4040, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4040)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Today's semantic web deals with meaning in a very restricted sense and offers static solutions. This is adequate for many scientific, technical purposes and for business transactions requiring machine-to-machine communication, but does not answer the needs of culture. Science, technology and business are concerned primarily with the latest findings, the state of the art, i.e. the paradigm or dominant world-view of the day. In this context, history is considered non-essential because it deals with things that are out of date. By contrast, culture faces a much larger challenge, namely, to re-present changes in ways of knowing; changing meanings in different places at a given time (synchronically) and over time (diachronically). Culture is about both objects and the commentaries on them; about a cumulative body of knowledge; about collective memory and heritage. Here, history plays a central role and older does not mean less important or less relevant. Hence, a Leonardo painting that is 400 years old, or a Greek statue that is 2500 years old, typically have richer commentaries and are often more valuable than their contemporary equivalents. In this context, the science of meaning (semantics) is necessarily much more complex than semantic primitives. A semantic web in the cultural domain must enable us to trace how meaning and knowledge organisation have evolved historically in different cultures. This paper examines five issues to address this challenge: 1) different world-views (i.e. a shift from substance to function and from ontology to multiple ontologies); 2) developments in definitions and meaning; 3) distinctions between words and concepts; 4) new classes of relations; and 5) dynamic models of knowledge organisation. These issues reveal that historical dimensions of cultural diversity in knowledge organisation are also central to classification of biological diversity. New ways are proposed of visualizing knowledge using a time/space horizon to distinguish between universals and particulars. It is suggested that new visualization methods make possible a history of questions as well as of answers, thus enabling dynamic access to cultural and historical dimensions of knowledge. Unlike earlier media, which were limited to recording factual dimensions of collective memory, digital media enable us to explore theories, ways of perceiving, ways of knowing; to enter into other mindsets and world-views and thus to attain novel insights and new levels of tolerance. Some practical consequences are outlined.
    Type
    a
  17. Engels, R.H.P.; Lech, T.Ch.: Generating ontologies for the Semantic Web : OntoBuilder (2004) 0.00
    0.0024392908 = product of:
      0.0048785815 = sum of:
        0.0048785815 = product of:
          0.009757163 = sum of:
            0.009757163 = weight(_text_:a in 4404) [ClassicSimilarity], result of:
              0.009757163 = score(doc=4404,freq=26.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18373153 = fieldWeight in 4404, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4404)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Significant progress has been made in technologies for publishing and distributing knowledge and information on the web. However, much of the published information is not organized, and it is hard to find answers to questions that require more than a keyword search. In general, one can say that the web is organizing itself. Information is often published in relatively ad hoc fashion. Typically, concern about the presentation of content has been limited to purely layout issues. This, combined with the fact that the representation language used on the World Wide Web (HTML) is mainly format-oriented, makes publishing on the WWW easy, giving it an enormous expressiveness. People add private, educational or organizational content to the web that is of an immensely diverse nature. Content on the web is growing closer to a real universal knowledge base, with one problem relatively undefined; the problem of the interpretation of its contents. Although widely acknowledged for its general and universal advantages, the increasing popularity of the web also shows us some major drawbacks. The developments of the information content on the web during the last year alone, clearly indicates the need for some changes. Perhaps one of the most significant problems with the web as a distributed information system is the difficulty of finding and comparing information.
    Thus, there is a clear need for the web to become more semantic. The aim of introducing semantics into the web is to enhance the precision of search, but also enable the use of logical reasoning on web contents in order to answer queries. The CORPORUM OntoBuilder toolset is developed specifically for this task. It consists of a set of applications that can fulfil a variety of tasks, either as stand-alone tools, or augmenting each other. Important tasks that are dealt with by CORPORUM are related to document and information retrieval (find relevant documents, or support the user finding them), as well as information extraction (building a knowledge base from web documents to answer queries), information dissemination (summarizing strategies and information visualization), and automated document classification strategies. First versions of the toolset are encouraging in that they show large potential as a supportive technology for building up the Semantic Web. In this chapter, methods for transforming the current web into a semantic web are discussed, as well as a technical solution that can perform this task: the CORPORUM tool set. First, the toolset is introduced; followed by some pragmatic issues relating to the approach; then there will be a short overview of the theory in relation to CognIT's vision; and finally, a discussion on some of the applications that arose from the project.
    Type
    a
  18. Soergel, D.: SemWeb: Proposal for an Open, multifunctional, multilingual system for integrated access to knowledge about concepts and terminology : exploration and development of the concept (1996) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 3576) [ClassicSimilarity], result of:
              0.009567685 = score(doc=3576,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 3576, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3576)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper presents a proposal for the long-range development of an open, multifunctional, multilingual system for integrated access to many kinds of knowledge about concepts and terminology. The system would draw on existing knowledge bases that are accessible through the Internet or on CD-ROM an on a common integrated distributed knowledge base that would grow incrementally over time. Existing knowledge bases would be accessed through a common interface that would search several knowledge bases, collate the data into a common format, and present them to the user. The common integrated distributed knowledge base would provide an environment in which many contributors could carry out classification and terminological projects more efficiently, with the results available in a common format. Over time, data from other knowledge bases could be incorporated into the common knowledge base, either by actual transfer (provided the knowledge base producers are willing) or by reference through a link. Either way, such incorporation requires intellectual work but allows for tighter integration than common interface access to multiple knowledge bases. Each piece of information in the common knowledge base will have all its sources attached, providing an acknowledgment mechanism that gives due credit to all contributors. The whole system woul be designed to be usable by many levels of users for improved information exchange.
    Content
    Expanded version of a paper published in Advances in Knowledge Organization v.5 (1996): 165-173 (4th Annual ISKO Conference, Washington, D.C., 1996 July 15-18): SemWeb: proposal for an open, multifunctional, multilingual system for integrated access to knowledge about concepts and terminology.
    Type
    a
  19. Fensel, D.; Staab, S.; Studer, R.; Harmelen, F. van; Davies, J.: ¬A future perspective : exploiting peer-to-peer and the Semantic Web for knowledge management (2004) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 2262) [ClassicSimilarity], result of:
              0.009471525 = score(doc=2262,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 2262, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2262)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Over the past few years, we have seen a growing interest in the potential of both peer-to-peer (P2P) computing and the use of more formal approaches to knowledge management, involving the development of ontologies. This penultimate chapter discusses possibilities that both approaches may offer for more effective and efficient knowledge management. In particular, we investigate how the two paradigms may be combined. In this chapter, we describe our vision in terms of a set of future steps that need to be taken to bring the results described in earlier chapters to their full potential.
    Type
    a
  20. Wang, H.; Liu, Q.; Penin, T.; Fu, L.; Zhang, L.; Tran, T.; Yu, Y.; Pan, Y.: Semplore: a scalable IR approach to search the Web of Data (2009) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 1638) [ClassicSimilarity], result of:
              0.009076704 = score(doc=1638,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 1638, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1638)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Web of Data keeps growing rapidly. However, the full exploitation of this large amount of structured data faces numerous challenges like usability, scalability, imprecise information needs and data change. We present Semplore, an IR-based system that aims at addressing these issues. Semplore supports intuitive faceted search and complex queries both on text and structured data. It combines imprecise keyword search and precise structured query in a unified ranking scheme. Scalable query processing is supported by leveraging inverted indexes traditionally used in IR systems. This is combined with a novel block-based index structure to support efficient index update when data changes. The experimental results show that Semplore is an efficient and effective system for searching the Web of Data and can be used as a basic infrastructure for Web-scale Semantic Web search engines.
    Type
    a

Years

Languages

  • e 49
  • d 6

Types