Search (25 results, page 1 of 2)

  • × theme_ss:"Semantic Web"
  • × theme_ss:"Wissensrepräsentation"
  • × type_ss:"a"
  1. Davies, J.; Weeks, R.: QuizRDF: search technology for the Semantic Web (2004) 0.05
    0.0541602 = product of:
      0.0812403 = sum of:
        0.06519419 = weight(_text_:resources in 4320) [ClassicSimilarity], result of:
          0.06519419 = score(doc=4320,freq=6.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.349276 = fieldWeight in 4320, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4320)
        0.016046109 = product of:
          0.032092217 = sum of:
            0.032092217 = weight(_text_:management in 4320) [ClassicSimilarity], result of:
              0.032092217 = score(doc=4320,freq=2.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.18620178 = fieldWeight in 4320, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4320)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    An information-seeking system is described which combines traditional keyword querying of WWW resources with the ability to browse and query against RD annotations of those resources. RDF(S) and RDF are used to specify and populate an ontology and the resultant RDF annotations are then indexed along with the full text of the annotated resources. The resultant index allows both keyword querying against the full text of the document and the literal values occurring in the RDF annotations, along with the ability to browse and query the ontology. We motivate our approach as a key enabler for fully exploiting the Semantic Web in the area of knowledge management and argue that the ability to combine searching and browsing behaviours more fully supports a typical information-seeking task. The approach is characterised as "low threshold, high ceiling" in the sense that where RDF annotations exist they are exploited for an improved information-seeking experience but where they do not yet exist, a search capability is still available.
  2. Davies, J.; Weeks, R.; Krohn, U.: QuizRDF: search technology for the Semantic Web (2004) 0.05
    0.052251942 = product of:
      0.07837791 = sum of:
        0.06022381 = weight(_text_:resources in 4406) [ClassicSimilarity], result of:
          0.06022381 = score(doc=4406,freq=8.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.32264733 = fieldWeight in 4406, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.03125 = fieldNorm(doc=4406)
        0.018154101 = product of:
          0.036308203 = sum of:
            0.036308203 = weight(_text_:management in 4406) [ClassicSimilarity], result of:
              0.036308203 = score(doc=4406,freq=4.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.21066327 = fieldWeight in 4406, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4406)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Important information is often scattered across Web and/or intranet resources. Traditional search engines return ranked retrieval lists that offer little or no information on the semantic relationships among documents. Knowledge workers spend a substantial amount of their time browsing and reading to find out how documents are related to one another and where each falls into the overall structure of the problem domain. Yet only when knowledge workers begin to locate the similarities and differences among pieces of information do they move into an essential part of their work: building relationships to create new knowledge. Information retrieval traditionally focuses on the relationship between a given query (or user profile) and the information store. On the other hand, exploitation of interrelationships between selected pieces of information (which can be facilitated by the use of ontologies) can put otherwise isolated information into a meaningful context. The implicit structures so revealed help users use and manage information more efficiently. Knowledge management tools are needed that integrate the resources dispersed across Web resources into a coherent corpus of interrelated information. Previous research in information integration has largely focused on integrating heterogeneous databases and knowledge bases, which represent information in a highly structured way, often by means of formal languages. In contrast, the Web consists to a large extent of unstructured or semi-structured natural language texts. As we have seen, ontologies offer an alternative way to cope with heterogeneous representations of Web resources. The domain model implicit in an ontology can be taken as a unifying structure for giving information a common representation and semantics. Once such a unifying structure exists, it can be exploited to improve browsing and retrieval performance in information access tools. QuizRDF is an example of such a tool.
    Source
    Towards the semantic Web: ontology-driven knowledge management. Eds.: J. Davies, u.a
  3. Breslin, J.G.: Social semantic information spaces (2009) 0.05
    0.04618463 = product of:
      0.069276944 = sum of:
        0.053230833 = weight(_text_:resources in 3377) [ClassicSimilarity], result of:
          0.053230833 = score(doc=3377,freq=4.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.28518265 = fieldWeight in 3377, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3377)
        0.016046109 = product of:
          0.032092217 = sum of:
            0.032092217 = weight(_text_:management in 3377) [ClassicSimilarity], result of:
              0.032092217 = score(doc=3377,freq=2.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.18620178 = fieldWeight in 3377, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3377)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The structural and syntactic web put in place in the early 90s is still much the same as what we use today: resources (web pages, files, etc.) connected by untyped hyperlinks. By untyped, we mean that there is no easy way for a computer to figure out what a link between two pages means - for example, on the W3C website, there are hundreds of links to the various organisations that are registered members of the association, but there is nothing explicitly saying that the link is to an organisation that is a "member of" the W3C or what type of organisation is represented by the link. On John's work page, he links to many papers he has written, but it does not explicitly say that he is the author of those papers or that he wrote such-and-such when he was working at a particular university. In fact, the Web was envisaged to be much more, as one can see from the image in Fig. 1 which is taken from Tim Berners Lee's original outline for the Web in 1989, entitled "Information Management: A Proposal". In this, all the resources are connected by links describing the type of relationships, e.g. "wrote", "describe", "refers to", etc. This is a precursor to the Semantic Web which we will come back to later.
  4. Davies, J.; Duke, A.; Stonkus, A.: OntoShare: evolving ontologies in a knowledge sharing system (2004) 0.04
    0.04465293 = product of:
      0.06697939 = sum of:
        0.037261583 = weight(_text_:resources in 4409) [ClassicSimilarity], result of:
          0.037261583 = score(doc=4409,freq=4.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.19962786 = fieldWeight in 4409, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4409)
        0.029717812 = product of:
          0.059435625 = sum of:
            0.059435625 = weight(_text_:management in 4409) [ClassicSimilarity], result of:
              0.059435625 = score(doc=4409,freq=14.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.34485054 = fieldWeight in 4409, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4409)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    We saw in the introduction how the Semantic Web makes possible a new generation of knowledge management tools. We now turn our attention more specifically to Semantic Web based support for virtual communities of practice. The notion of communities of practice has attracted much attention in the field of knowledge management. Communities of practice are groups within (or sometimes across) organizations who share a common set of information needs or problems. They are typically not a formal organizational unit but an informal network, each sharing in part a common agenda and shared interests or issues. In one example it was found that a lot of knowledge sharing among copier engineers took place through informal exchanges, often around a water cooler. As well as local, geographically based communities, trends towards flexible working and globalisation have led to interest in supporting dispersed communities using Internet technology. The challenge for organizations is to support such communities and make them effective. Provided with an ontology meeting the needs of a particular community of practice, knowledge management tools can arrange knowledge assets into the predefined conceptual classes of the ontology, allowing more natural and intuitive access to knowledge. Knowledge management tools must give users the ability to organize information into a controllable asset. Building an intranet-based store of information is not sufficient for knowledge management; the relationships within the stored information are vital. These relationships cover such diverse issues as relative importance, context, sequence, significance, causality and association. The potential for knowledge management tools is vast; not only can they make better use of the raw information already available, but they can sift, abstract and help to share new information, and present it to users in new and compelling ways.
    In this chapter, we describe the OntoShare system which facilitates and encourages the sharing of information between communities of practice within (or perhaps across) organizations and which encourages people - who may not previously have known of each other's existence in a large organization - to make contact where there are mutual concerns or interests. As users contribute information to the community, a knowledge resource annotated with meta-data is created. Ontologies defined using the resource description framework (RDF) and RDF Schema (RDFS) are used in this process. RDF is a W3C recommendation for the formulation of meta-data for WWW resources. RDF(S) extends this standard with the means to specify domain vocabulary and object structures - that is, concepts and the relationships that hold between them. In the next section, we describe in detail the way in which OntoShare can be used to share and retrieve knowledge and how that knowledge is represented in an RDF-based ontology. We then proceed to discuss in Section 10.3 how the ontologies in OntoShare evolve over time based on user interaction with the system and motivate our approach to user-based creation of RDF-annotated information resources. The way in which OntoShare can help to locate expertise within an organization is then described, followed by a discussion of the sociotechnical issues of deploying such a tool. Finally, a planned evaluation exercise and avenues for further research are outlined.
    Source
    Towards the semantic Web: ontology-driven knowledge management. Eds.: J. Davies, u.a
  5. Gendt, M. van; Isaac, I.; Meij, L. van der; Schlobach, S.: Semantic Web techniques for multiple views on heterogeneous collections : a case study (2006) 0.04
    0.04396772 = product of:
      0.06595158 = sum of:
        0.045167856 = weight(_text_:resources in 2418) [ClassicSimilarity], result of:
          0.045167856 = score(doc=2418,freq=2.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.2419855 = fieldWeight in 2418, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.046875 = fieldNorm(doc=2418)
        0.020783724 = product of:
          0.04156745 = sum of:
            0.04156745 = weight(_text_:22 in 2418) [ClassicSimilarity], result of:
              0.04156745 = score(doc=2418,freq=2.0), product of:
                0.17906146 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051133685 = queryNorm
                0.23214069 = fieldWeight in 2418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2418)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Integrated digital access to multiple collections is a prominent issue for many Cultural Heritage institutions. The metadata describing diverse collections must be interoperable, which requires aligning the controlled vocabularies that are used to annotate objects from these collections. In this paper, we present an experiment where we match the vocabularies of two collections by applying the Knowledge Representation techniques established in recent Semantic Web research. We discuss the steps that are required for such matching, namely formalising the initial resources using Semantic Web languages, and running ontology mapping tools on the resulting representations. In addition, we present a prototype that enables the user to browse the two collections using the obtained alignment while still providing her with the original vocabulary structures.
    Source
    Research and advanced technology for digital libraries : 10th European conference, proceedings / ECDL 2006, Alicante, Spain, September 17 - 22, 2006
  6. Wielinga, B.; Wielemaker, J.; Schreiber, G.; Assem, M. van: Methods for porting resources to the Semantic Web (2004) 0.02
    0.021292333 = product of:
      0.063876994 = sum of:
        0.063876994 = weight(_text_:resources in 4640) [ClassicSimilarity], result of:
          0.063876994 = score(doc=4640,freq=4.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.34221917 = fieldWeight in 4640, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.046875 = fieldNorm(doc=4640)
      0.33333334 = coord(1/3)
    
    Abstract
    Ontologies will play a central role in the development of the Semantic Web. It is unrealistic to assume that such ontologies will be developed from scratch. Rather, we assume that existing resources such as thesauri and lexical data bases will be reused in the development of ontologies for the Semantic Web. In this paper we describe a method for converting existing source material to a representation that is compatible with Semantic Web languages such as RDF(S) and OWL. The method is illustrated with three case studies: converting Wordnet, AAT and MeSH to RDF(S) and OWL.
  7. Zhitomirsky-Geffet, M.; Bar-Ilan, J.: Towards maximal unification of semantically diverse ontologies for controversial domains (2014) 0.02
    0.017795136 = product of:
      0.053385407 = sum of:
        0.053385407 = sum of:
          0.025673775 = weight(_text_:management in 1634) [ClassicSimilarity], result of:
            0.025673775 = score(doc=1634,freq=2.0), product of:
              0.17235184 = queryWeight, product of:
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.051133685 = queryNorm
              0.14896142 = fieldWeight in 1634, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.03125 = fieldNorm(doc=1634)
          0.027711634 = weight(_text_:22 in 1634) [ClassicSimilarity], result of:
            0.027711634 = score(doc=1634,freq=2.0), product of:
              0.17906146 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051133685 = queryNorm
              0.15476047 = fieldWeight in 1634, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=1634)
      0.33333334 = coord(1/3)
    
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 66(2014) no.5, S.494-518
  8. Davies, J.; Fensel, D.; Harmelen, F. van: Conclusions: ontology-driven knowledge management : towards the Semantic Web? (2004) 0.02
    0.01711585 = product of:
      0.05134755 = sum of:
        0.05134755 = product of:
          0.1026951 = sum of:
            0.1026951 = weight(_text_:management in 4407) [ClassicSimilarity], result of:
              0.1026951 = score(doc=4407,freq=8.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.5958457 = fieldWeight in 4407, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4407)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The global economy is rapidly becoming more and more knowledge intensive. Knowledge is now widely recognized as the fourth production factor, on an equal footing with the traditional production factors of labour, capital and materials. Managing knowledge is as important as the traditional management of labour, capital and materials. In this book, we have shown how Semantic Web technology can make an important contribution to knowledge management.
    Source
    Towards the semantic Web: ontology-driven knowledge management. Eds.: J. Davies, u.a
  9. Koutsomitropoulos, D.A.; Solomou, G.D.; Alexopoulos, A.D.; Papatheodorou, T.S.: Semantic metadata interoperability and inference-based querying in digital repositories (2009) 0.02
    0.015055953 = product of:
      0.045167856 = sum of:
        0.045167856 = weight(_text_:resources in 3731) [ClassicSimilarity], result of:
          0.045167856 = score(doc=3731,freq=2.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.2419855 = fieldWeight in 3731, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.046875 = fieldNorm(doc=3731)
      0.33333334 = coord(1/3)
    
    Abstract
    Metadata applications have evolved in time into highly structured "islands of information" about digital resources, often bearing a strong semantic interpretation. Scarcely however are these semantics being communicated in machine readable and understandable ways. At the same time, the process for transforming the implied metadata knowledge into explicit Semantic Web descriptions can be problematic and is not always evident. In this article we take upon the well-established Dublin Core metadata standard as well as other metadata schemata, which often appear in digital repositories set-ups, and suggest a proper Semantic Web OWL ontology. In this process the authors cope with discrepancies and incompatibilities, indicative of such attempts, in novel ways. Moreover, we show the potential and necessity of this approach by demonstrating inferences on the resulting ontology, instantiated with actual metadata records. The authors conclude by presenting a working prototype that provides for inference-based querying on top of digital repositories.
  10. Zhang, L.: Linking information through function (2014) 0.02
    0.015055953 = product of:
      0.045167856 = sum of:
        0.045167856 = weight(_text_:resources in 1526) [ClassicSimilarity], result of:
          0.045167856 = score(doc=1526,freq=2.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.2419855 = fieldWeight in 1526, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.046875 = fieldNorm(doc=1526)
      0.33333334 = coord(1/3)
    
    Abstract
    How information resources can be meaningfully related has been addressed in contexts from bibliographic entries to hyperlinks and, more recently, linked data. The genre structure and relationships among genre structure constituents shed new light on organizing information by purpose or function. This study examines the relationships among a set of functional units previously constructed in a taxonomy, each of which is a chunk of information embedded in a document and is distinct in terms of its communicative function. Through a card-sort study, relationships among functional units were identified with regard to their occurrence and function. The findings suggest that a group of functional units can be identified, collocated, and navigated by particular relationships. Understanding how functional units are related to each other is significant in linking information pieces in documents to support finding, aggregating, and navigating information in a distributed information environment.
  11. Fensel, D.; Staab, S.; Studer, R.; Harmelen, F. van; Davies, J.: ¬A future perspective : exploiting peer-to-peer and the Semantic Web for knowledge management (2004) 0.01
    0.014976369 = product of:
      0.044929106 = sum of:
        0.044929106 = product of:
          0.08985821 = sum of:
            0.08985821 = weight(_text_:management in 2262) [ClassicSimilarity], result of:
              0.08985821 = score(doc=2262,freq=8.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.521365 = fieldWeight in 2262, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2262)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Over the past few years, we have seen a growing interest in the potential of both peer-to-peer (P2P) computing and the use of more formal approaches to knowledge management, involving the development of ontologies. This penultimate chapter discusses possibilities that both approaches may offer for more effective and efficient knowledge management. In particular, we investigate how the two paradigms may be combined. In this chapter, we describe our vision in terms of a set of future steps that need to be taken to bring the results described in earlier chapters to their full potential.
    Source
    Towards the semantic Web: ontology-driven knowledge management. Eds.: J. Davies, u.a
  12. Uren, V.; Cimiano, P.; Iria, J.; Handschuh, S.; Vargas-Vera, M.; Motta, E.; Ciravegnac, F.: Semantic annotation for knowledge management : requirements and a survey of the state of the art (2006) 0.01
    0.011117073 = product of:
      0.033351216 = sum of:
        0.033351216 = product of:
          0.06670243 = sum of:
            0.06670243 = weight(_text_:management in 229) [ClassicSimilarity], result of:
              0.06670243 = score(doc=229,freq=6.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.38701317 = fieldWeight in 229, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046875 = fieldNorm(doc=229)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    While much of a company's knowledge can be found in text repositories, current content management systems have limited capabilities for structuring and interpreting documents. In the emerging Semantic Web, search, interpretation and aggregation can be addressed by ontology-based semantic mark-up. In this paper, we examine semantic annotation, identify a number of requirements, and review the current generation of semantic annotation systems. This analysis shows that, while there is still some way to go before semantic annotation tools will be able to address fully all the knowledge management needs, research in the area is active and making good progress.
  13. Synak, M.; Dabrowski, M.; Kruk, S.R.: Semantic Web and ontologies (2009) 0.01
    0.009237211 = product of:
      0.027711634 = sum of:
        0.027711634 = product of:
          0.055423267 = sum of:
            0.055423267 = weight(_text_:22 in 3376) [ClassicSimilarity], result of:
              0.055423267 = score(doc=3376,freq=2.0), product of:
                0.17906146 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051133685 = queryNorm
                0.30952093 = fieldWeight in 3376, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3376)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    31. 7.2010 16:58:22
  14. Iosif, V.; Mika, P.; Larsson, R.; Akkermans, H.: Field experimenting with Semantic Web tools in a virtual organization (2004) 0.01
    0.009077052 = product of:
      0.027231153 = sum of:
        0.027231153 = product of:
          0.054462306 = sum of:
            0.054462306 = weight(_text_:management in 4412) [ClassicSimilarity], result of:
              0.054462306 = score(doc=4412,freq=4.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.31599492 = fieldWeight in 4412, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4412)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    How do we test Semantic Web tools? How can we know that they perform better than current technologies for knowledge management? What does 'better' precisely mean? How can we operationalize and measure this? Some of these questions may be partially answered by simulations in lab experiments that for example look at the speed or scalability of algorithms. However, it is not clear in advance to what extent such laboratory results carry over to the real world. Quality is in the eye of the beholder, and so the quality of Semantic Web methods will very much depend on the perception of their usefulness as seen by tool users. This can only be tested by carefully designed field experiments. In this chapter, we discuss the design considerations and set-up of field experiments with Semantic Web tools, and illustrate these with case examples from a virtual organization in industrial research.
    Source
    Towards the semantic Web: ontology-driven knowledge management. Eds.: J. Davies, u.a
  15. McGuinness, D.L.: Ontologies come of age (2003) 0.01
    0.007564209 = product of:
      0.022692626 = sum of:
        0.022692626 = product of:
          0.045385253 = sum of:
            0.045385253 = weight(_text_:management in 3084) [ClassicSimilarity], result of:
              0.045385253 = score(doc=3084,freq=4.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.2633291 = fieldWeight in 3084, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3084)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Ontologies have moved beyond the domains of library science, philosophy, and knowledge representation. They are now the concerns of marketing departments, CEOs, and mainstream business. Research analyst companies such as Forrester Research report on the critical roles of ontologies in support of browsing and search for e-commerce and in support of interoperability for facilitation of knowledge management and configuration. One now sees ontologies used as central controlled vocabularies that are integrated into catalogues, databases, web publications, knowledge management applications, etc. Large ontologies are essential components in many online applications including search (such as Yahoo and Lycos), e-commerce (such as Amazon and eBay), configuration (such as Dell and PC-Order), etc. One also sees ontologies that have long life spans, sometimes in multiple projects (such as UMLS, SIC codes, etc.). Such diverse usage generates many implications for ontology environments. In this paper, we will discuss ontologies and requirements in their current instantiations on the web today. We will describe some desirable properties of ontologies. We will also discuss how both simple and complex ontologies are being and may be used to support varied applications. We will conclude with a discussion of emerging trends in ontologies and their environments and briefly mention our evolving ontology evolution environment.
  16. Sure, Y.; Erdmann, M.; Studer, R.: OntoEdit: collaborative engineering of ontologies (2004) 0.01
    0.007411381 = product of:
      0.022234144 = sum of:
        0.022234144 = product of:
          0.044468287 = sum of:
            0.044468287 = weight(_text_:management in 4405) [ClassicSimilarity], result of:
              0.044468287 = score(doc=4405,freq=6.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.25800878 = fieldWeight in 4405, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4405)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Developing ontologies is central to our vision of Semantic Web-based knowledge management. The methodology described in Chapter 3 guides the development of ontologies for different applications. However, because of the size of ontologies, their complexity, their formal underpinnings and the necessity to come towards a shared understanding within a group of people when defining an ontology, ontology construction is still far from being a well-understood process. Concerning the methodology, OntoEdit focuses on three of the main steps for ontology development (the methodology is described in Chapter 3), viz. the kick off, refinement, and evaluation. We describe the steps supported by OntoEdit and focus on collaborative aspects that occur during each of the step. First, all requirements of the envisaged ontology are collected during the kick off phase. Typically for ontology engineering, ontology engineers and domain experts are joined in a team that works together on a description of the domain and the goal of the ontology, design guidelines, available knowledge sources (e.g. re-usable ontologies and thesauri, etc.), potential users and use cases and applications supported by the ontology. The output of this phase is a semiformal description of the ontology. Second, during the refinement phase, the team extends the semi-formal description in several iterations and formalizes it in an appropriate representation language like RDF(S) or, more advanced, DAML1OIL. The output of this phase is a mature ontology (the 'target ontology'). Third, the target ontology needs to be evaluated according to the requirement specifications. Typically this phase serves as a proof for the usefulness of ontologies (and ontology-based applications) and may involve the engineering team as well as end users of the targeted application. The output of this phase is an evaluated ontology, ready for roll-out into a productive environment. Support for these collaborative development steps within the ontology development methodology is crucial in order to meet the conflicting needs for ease of use and construction of complex ontology structures. We now illustrate OntoEdit's support for each of the supported steps. The examples shown are taken from the Swiss Life case study on skills management (cf. Chapter 12).
    Source
    Towards the semantic Web: ontology-driven knowledge management. Eds.: J. Davies, u.a
  17. Prud'hommeaux, E.; Gayo, E.: RDF ventures to boldly meet your most pedestrian needs (2015) 0.01
    0.0069279084 = product of:
      0.020783724 = sum of:
        0.020783724 = product of:
          0.04156745 = sum of:
            0.04156745 = weight(_text_:22 in 2024) [ClassicSimilarity], result of:
              0.04156745 = score(doc=2024,freq=2.0), product of:
                0.17906146 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051133685 = queryNorm
                0.23214069 = fieldWeight in 2024, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2024)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Bulletin of the Association for Information Science and Technology. 41(2015) no.4, S.18-22
  18. Zeng, M.L.; Fan, W.; Lin, X.: SKOS for an integrated vocabulary structure (2008) 0.01
    0.006531695 = product of:
      0.019595085 = sum of:
        0.019595085 = product of:
          0.03919017 = sum of:
            0.03919017 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
              0.03919017 = score(doc=2654,freq=4.0), product of:
                0.17906146 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051133685 = queryNorm
                0.21886435 = fieldWeight in 2654, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2654)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    In order to transfer the Chinese Classified Thesaurus (CCT) into a machine-processable format and provide CCT-based Web services, a pilot study has been conducted in which a variety of selected CCT classes and mapped thesaurus entries are encoded with SKOS. OWL and RDFS are also used to encode the same contents for the purposes of feasibility and cost-benefit comparison. CCT is a collected effort led by the National Library of China. It is an integration of the national standards Chinese Library Classification (CLC) 4th edition and Chinese Thesaurus (CT). As a manually created mapping product, CCT provides for each of the classes the corresponding thesaurus terms, and vice versa. The coverage of CCT includes four major clusters: philosophy, social sciences and humanities, natural sciences and technologies, and general works. There are 22 main-classes, 52,992 sub-classes and divisions, 110,837 preferred thesaurus terms, 35,690 entry terms (non-preferred terms), and 59,738 pre-coordinated headings (Chinese Classified Thesaurus, 2005) Major challenges of encoding this large vocabulary comes from its integrated structure. CCT is a result of the combination of two structures (illustrated in Figure 1): a thesaurus that uses ISO-2788 standardized structure and a classification scheme that is basically enumerative, but provides some flexibility for several kinds of synthetic mechanisms Other challenges include the complex relationships caused by differences of granularities of two original schemes and their presentation with various levels of SKOS elements; as well as the diverse coordination of entries due to the use of auxiliary tables and pre-coordinated headings derived from combining classes, subdivisions, and thesaurus terms, which do not correspond to existing unique identifiers. The poster reports the progress, shares the sample SKOS entries, and summarizes problems identified during the SKOS encoding process. Although OWL Lite and OWL Full provide richer expressiveness, the cost-benefit issues and the final purposes of encoding CCT raise questions of using such approaches.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  19. Fluit, C.; Horst, H. ter; Meer, J. van der; Sabou, M.; Mika, P.: Spectacle (2004) 0.01
    0.0064184438 = product of:
      0.01925533 = sum of:
        0.01925533 = product of:
          0.03851066 = sum of:
            0.03851066 = weight(_text_:management in 4337) [ClassicSimilarity], result of:
              0.03851066 = score(doc=4337,freq=2.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.22344214 = fieldWeight in 4337, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4337)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Towards the semantic Web: ontology-driven knowledge management. Eds.: J. Davies, u.a
  20. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.01
    0.0057732575 = product of:
      0.017319772 = sum of:
        0.017319772 = product of:
          0.034639545 = sum of:
            0.034639545 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
              0.034639545 = score(doc=4553,freq=2.0), product of:
                0.17906146 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051133685 = queryNorm
                0.19345059 = fieldWeight in 4553, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    16.11.2018 14:22:01