Search (55 results, page 1 of 3)

  • × theme_ss:"Semantic Web"
  • × theme_ss:"Wissensrepräsentation"
  • × type_ss:"a"
  1. Gendt, M. van; Isaac, I.; Meij, L. van der; Schlobach, S.: Semantic Web techniques for multiple views on heterogeneous collections : a case study (2006) 0.06
    0.060048036 = product of:
      0.12009607 = sum of:
        0.062718846 = weight(_text_:web in 2418) [ClassicSimilarity], result of:
          0.062718846 = score(doc=2418,freq=8.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.43268442 = fieldWeight in 2418, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2418)
        0.039323866 = weight(_text_:computer in 2418) [ClassicSimilarity], result of:
          0.039323866 = score(doc=2418,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.24226204 = fieldWeight in 2418, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.046875 = fieldNorm(doc=2418)
        0.01805336 = product of:
          0.03610672 = sum of:
            0.03610672 = weight(_text_:22 in 2418) [ClassicSimilarity], result of:
              0.03610672 = score(doc=2418,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.23214069 = fieldWeight in 2418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2418)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Abstract
    Integrated digital access to multiple collections is a prominent issue for many Cultural Heritage institutions. The metadata describing diverse collections must be interoperable, which requires aligning the controlled vocabularies that are used to annotate objects from these collections. In this paper, we present an experiment where we match the vocabularies of two collections by applying the Knowledge Representation techniques established in recent Semantic Web research. We discuss the steps that are required for such matching, namely formalising the initial resources using Semantic Web languages, and running ontology mapping tools on the resulting representations. In addition, we present a prototype that enables the user to browse the two collections using the obtained alignment while still providing her with the original vocabulary structures.
    Series
    Lecture notes in computer science; vol.4172
    Source
    Research and advanced technology for digital libraries : 10th European conference, proceedings / ECDL 2006, Alicante, Spain, September 17 - 22, 2006
    Theme
    Semantic Web
  2. Lukasiewicz, T.: Uncertainty reasoning for the Semantic Web (2017) 0.05
    0.05187861 = product of:
      0.15563582 = sum of:
        0.10975798 = weight(_text_:web in 3939) [ClassicSimilarity], result of:
          0.10975798 = score(doc=3939,freq=18.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.75719774 = fieldWeight in 3939, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3939)
        0.04587784 = weight(_text_:computer in 3939) [ClassicSimilarity], result of:
          0.04587784 = score(doc=3939,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.28263903 = fieldWeight in 3939, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3939)
      0.33333334 = coord(2/6)
    
    Abstract
    The Semantic Web has attracted much attention, both from academia and industry. An important role in research towards the Semantic Web is played by formalisms and technologies for handling uncertainty and/or vagueness. In this paper, I first provide some motivating examples for handling uncertainty and/or vagueness in the Semantic Web. I then give an overview of some own formalisms for handling uncertainty and/or vagueness in the Semantic Web.
    Series
    Lecture Notes in Computer Scienc;10370) (Information Systems and Applications, incl. Internet/Web, and HCI
    Source
    Reasoning Web: Semantic Interoperability on the Web, 13th International Summer School 2017, London, UK, July 7-11, 2017, Tutorial Lectures. Eds.: Ianni, G. et al
    Theme
    Semantic Web
  3. Wang, H.; Liu, Q.; Penin, T.; Fu, L.; Zhang, L.; Tran, T.; Yu, Y.; Pan, Y.: Semplore: a scalable IR approach to search the Web of Data (2009) 0.05
    0.048833784 = product of:
      0.14650135 = sum of:
        0.057803504 = weight(_text_:wide in 1638) [ClassicSimilarity], result of:
          0.057803504 = score(doc=1638,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.29372054 = fieldWeight in 1638, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=1638)
        0.08869784 = weight(_text_:web in 1638) [ClassicSimilarity], result of:
          0.08869784 = score(doc=1638,freq=16.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.6119082 = fieldWeight in 1638, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=1638)
      0.33333334 = coord(2/6)
    
    Abstract
    The Web of Data keeps growing rapidly. However, the full exploitation of this large amount of structured data faces numerous challenges like usability, scalability, imprecise information needs and data change. We present Semplore, an IR-based system that aims at addressing these issues. Semplore supports intuitive faceted search and complex queries both on text and structured data. It combines imprecise keyword search and precise structured query in a unified ranking scheme. Scalable query processing is supported by leveraging inverted indexes traditionally used in IR systems. This is combined with a novel block-based index structure to support efficient index update when data changes. The experimental results show that Semplore is an efficient and effective system for searching the Web of Data and can be used as a basic infrastructure for Web-scale Semantic Web search engines.
    Source
    Web semantics: science, services and agents on the World Wide Web. 7(2009) no.3, S.177-188
    Theme
    Semantic Web
  4. Engels, R.H.P.; Lech, T.Ch.: Generating ontologies for the Semantic Web : OntoBuilder (2004) 0.04
    0.04241117 = product of:
      0.1272335 = sum of:
        0.03853567 = weight(_text_:wide in 4404) [ClassicSimilarity], result of:
          0.03853567 = score(doc=4404,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.1958137 = fieldWeight in 4404, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=4404)
        0.08869784 = weight(_text_:web in 4404) [ClassicSimilarity], result of:
          0.08869784 = score(doc=4404,freq=36.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.6119082 = fieldWeight in 4404, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=4404)
      0.33333334 = coord(2/6)
    
    Abstract
    Significant progress has been made in technologies for publishing and distributing knowledge and information on the web. However, much of the published information is not organized, and it is hard to find answers to questions that require more than a keyword search. In general, one can say that the web is organizing itself. Information is often published in relatively ad hoc fashion. Typically, concern about the presentation of content has been limited to purely layout issues. This, combined with the fact that the representation language used on the World Wide Web (HTML) is mainly format-oriented, makes publishing on the WWW easy, giving it an enormous expressiveness. People add private, educational or organizational content to the web that is of an immensely diverse nature. Content on the web is growing closer to a real universal knowledge base, with one problem relatively undefined; the problem of the interpretation of its contents. Although widely acknowledged for its general and universal advantages, the increasing popularity of the web also shows us some major drawbacks. The developments of the information content on the web during the last year alone, clearly indicates the need for some changes. Perhaps one of the most significant problems with the web as a distributed information system is the difficulty of finding and comparing information.
    Thus, there is a clear need for the web to become more semantic. The aim of introducing semantics into the web is to enhance the precision of search, but also enable the use of logical reasoning on web contents in order to answer queries. The CORPORUM OntoBuilder toolset is developed specifically for this task. It consists of a set of applications that can fulfil a variety of tasks, either as stand-alone tools, or augmenting each other. Important tasks that are dealt with by CORPORUM are related to document and information retrieval (find relevant documents, or support the user finding them), as well as information extraction (building a knowledge base from web documents to answer queries), information dissemination (summarizing strategies and information visualization), and automated document classification strategies. First versions of the toolset are encouraging in that they show large potential as a supportive technology for building up the Semantic Web. In this chapter, methods for transforming the current web into a semantic web are discussed, as well as a technical solution that can perform this task: the CORPORUM tool set. First, the toolset is introduced; followed by some pragmatic issues relating to the approach; then there will be a short overview of the theory in relation to CognIT's vision; and finally, a discussion on some of the applications that arose from the project.
    Source
    Towards the semantic Web: ontology-driven knowledge management. Eds.: J. Davies, u.a
    Theme
    Semantic Web
  5. Uren, V.; Cimiano, P.; Iria, J.; Handschuh, S.; Vargas-Vera, M.; Motta, E.; Ciravegnac, F.: Semantic annotation for knowledge management : requirements and a survey of the state of the art (2006) 0.04
    0.04017412 = product of:
      0.12052235 = sum of:
        0.057803504 = weight(_text_:wide in 229) [ClassicSimilarity], result of:
          0.057803504 = score(doc=229,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.29372054 = fieldWeight in 229, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=229)
        0.062718846 = weight(_text_:web in 229) [ClassicSimilarity], result of:
          0.062718846 = score(doc=229,freq=8.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.43268442 = fieldWeight in 229, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=229)
      0.33333334 = coord(2/6)
    
    Abstract
    While much of a company's knowledge can be found in text repositories, current content management systems have limited capabilities for structuring and interpreting documents. In the emerging Semantic Web, search, interpretation and aggregation can be addressed by ontology-based semantic mark-up. In this paper, we examine semantic annotation, identify a number of requirements, and review the current generation of semantic annotation systems. This analysis shows that, while there is still some way to go before semantic annotation tools will be able to address fully all the knowledge management needs, research in the area is active and making good progress.
    Source
    Web semantics: science, services and agents on the World Wide Web. 4(2006) no.1, S.14-28
    Theme
    Semantic Web
  6. Zhitomirsky-Geffet, M.; Bar-Ilan, J.: Towards maximal unification of semantically diverse ontologies for controversial domains (2014) 0.04
    0.040068593 = product of:
      0.080137186 = sum of:
        0.03853567 = weight(_text_:wide in 1634) [ClassicSimilarity], result of:
          0.03853567 = score(doc=1634,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.1958137 = fieldWeight in 1634, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=1634)
        0.029565949 = weight(_text_:web in 1634) [ClassicSimilarity], result of:
          0.029565949 = score(doc=1634,freq=4.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.2039694 = fieldWeight in 1634, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=1634)
        0.012035574 = product of:
          0.024071148 = sum of:
            0.024071148 = weight(_text_:22 in 1634) [ClassicSimilarity], result of:
              0.024071148 = score(doc=1634,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.15476047 = fieldWeight in 1634, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1634)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Abstract
    Purpose - Ontologies are prone to wide semantic variability due to subjective points of view of their composers. The purpose of this paper is to propose a new approach for maximal unification of diverse ontologies for controversial domains by their relations. Design/methodology/approach - Effective matching or unification of multiple ontologies for a specific domain is crucial for the success of many semantic web applications, such as semantic information retrieval and organization, document tagging, summarization and search. To this end, numerous automatic and semi-automatic techniques were proposed in the past decade that attempt to identify similar entities, mostly classes, in diverse ontologies for similar domains. Apparently, matching individual entities cannot result in full integration of ontologies' semantics without matching their inter-relations with all other-related classes (and instances). However, semantic matching of ontological relations still constitutes a major research challenge. Therefore, in this paper the authors propose a new paradigm for assessment of maximal possible matching and unification of ontological relations. To this end, several unification rules for ontological relations were devised based on ontological reference rules, and lexical and textual entailment. These rules were semi-automatically implemented to extend a given ontology with semantically matching relations from another ontology for a similar domain. Then, the ontologies were unified through these similar pairs of relations. The authors observe that these rules can be also facilitated to reveal the contradictory relations in different ontologies. Findings - To assess the feasibility of the approach two experiments were conducted with different sets of multiple personal ontologies on controversial domains constructed by trained subjects. The results for about 50 distinct ontology pairs demonstrate a good potential of the methodology for increasing inter-ontology agreement. Furthermore, the authors show that the presented methodology can lead to a complete unification of multiple semantically heterogeneous ontologies. Research limitations/implications - This is a conceptual study that presents a new approach for semantic unification of ontologies by a devised set of rules along with the initial experimental evidence of its feasibility and effectiveness. However, this methodology has to be fully automatically implemented and tested on a larger dataset in future research. Practical implications - This result has implication for semantic search, since a richer ontology, comprised of multiple aspects and viewpoints of the domain of knowledge, enhances discoverability and improves search results. Originality/value - To the best of the knowledge, this is the first study to examine and assess the maximal level of semantic relation-based ontology unification.
    Date
    20. 1.2015 18:30:22
    Theme
    Semantic Web
  7. Zhang, L.; Liu, Q.L.; Zhang, J.; Wang, H.F.; Pan, Y.; Yu, Y.: Semplore: an IR approach to scalable hybrid query of Semantic Web data (2007) 0.04
    0.039814256 = product of:
      0.11944277 = sum of:
        0.08667288 = weight(_text_:web in 231) [ClassicSimilarity], result of:
          0.08667288 = score(doc=231,freq=22.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.59793836 = fieldWeight in 231, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=231)
        0.03276989 = weight(_text_:computer in 231) [ClassicSimilarity], result of:
          0.03276989 = score(doc=231,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.20188503 = fieldWeight in 231, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=231)
      0.33333334 = coord(2/6)
    
    Abstract
    As an extension to the current Web, Semantic Web will not only contain structured data with machine understandable semantics but also textual information. While structured queries can be used to find information more precisely on the Semantic Web, keyword searches are still needed to help exploit textual information. It thus becomes very important that we can combine precise structured queries with imprecise keyword searches to have a hybrid query capability. In addition, due to the huge volume of information on the Semantic Web, the hybrid query must be processed in a very scalable way. In this paper, we define such a hybrid query capability that combines unary tree-shaped structured queries with keyword searches. We show how existing information retrieval (IR) index structures and functions can be reused to index semantic web data and its textual information, and how the hybrid query is evaluated on the index structure using IR engines in an efficient and scalable manner. We implemented this IR approach in an engine called Semplore. Comprehensive experiments on its performance show that it is a promising approach. It leads us to believe that it may be possible to evolve current web search engines to query and search the Semantic Web. Finally, we briefy describe how Semplore is used for searching Wikipedia and an IBM customer's product information.
    Series
    Lecture notes in computer science; 4825
    Source
    Proceeding ISWC'07/ASWC'07 : Proceedings of the 6th international The semantic web and 2nd Asian conference on Asian semantic web conference. Ed.: K. Aberer et al
    Theme
    Semantic Web
  8. Fensel, D.; Harmelen, F. van; Horrocks, I.: OIL and DAML+OIL : ontology languages for the Semantic Web (2004) 0.04
    0.037393916 = product of:
      0.112181745 = sum of:
        0.04816959 = weight(_text_:wide in 3244) [ClassicSimilarity], result of:
          0.04816959 = score(doc=3244,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.24476713 = fieldWeight in 3244, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3244)
        0.064012155 = weight(_text_:web in 3244) [ClassicSimilarity], result of:
          0.064012155 = score(doc=3244,freq=12.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.4416067 = fieldWeight in 3244, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3244)
      0.33333334 = coord(2/6)
    
    Abstract
    This chapter discusses OIL and DAML1OIL, currently the most prominent ontology languages for the Semantic Web. The chapter starts by discussing the pyramid of languages that underlie the architecture of the Semantic Web (XML, RDF, RDFS). In section 2.2, we briefly describe XML, RDF and RDFS. We then discuss in more detail OIL and DAML1OIL, the first proposals for languages at the ontology layer of the semantic pyramid. For OIL (and to some extent DAML1OIL) we discuss the general design motivations (Section 2.3), describe the constructions in the language (Section 2.4), and the various syntactic forms of these languages (Section 2.5). Section 2.6 discusses the layered architecture of the language, section 2.7 briefly mentions the formal semantics, section 2.8 discusses the transition from OIL to DAML+OIL, and section 2.9 concludes with our experience with the language to date and future development in the context of the World Wide Web Consortium (W3C). This chapter is not intended to give full and formal definitions of either the syntax or the semantics of OIL or DAML1OIL. Such definitions are already available elsewhere: http://www.ontoknowledge.org/oil/ for OIL and http://www.w3.org/submission/2001/12/ for DAML1OIL.
    Source
    Towards the semantic Web: ontology-driven knowledge management. Eds.: J. Davies, u.a
    Theme
    Semantic Web
  9. Suchanek, F.M.; Kasneci, G.; Weikum, G.: YAGO: a large ontology from Wikipedia and WordNet (2008) 0.04
    0.03737321 = product of:
      0.11211963 = sum of:
        0.057803504 = weight(_text_:wide in 3404) [ClassicSimilarity], result of:
          0.057803504 = score(doc=3404,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.29372054 = fieldWeight in 3404, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=3404)
        0.054316122 = weight(_text_:web in 3404) [ClassicSimilarity], result of:
          0.054316122 = score(doc=3404,freq=6.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.37471575 = fieldWeight in 3404, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3404)
      0.33333334 = coord(2/6)
    
    Source
    Web semantics: science, services and agents on the World Wide Web. 6(2008) no.3, S.203-217
    Theme
    Semantic Web
  10. Menzel, C.: Knowledge representation, the World Wide Web, and the evolution of logic (2011) 0.04
    0.03737321 = product of:
      0.11211963 = sum of:
        0.057803504 = weight(_text_:wide in 761) [ClassicSimilarity], result of:
          0.057803504 = score(doc=761,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.29372054 = fieldWeight in 761, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=761)
        0.054316122 = weight(_text_:web in 761) [ClassicSimilarity], result of:
          0.054316122 = score(doc=761,freq=6.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.37471575 = fieldWeight in 761, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=761)
      0.33333334 = coord(2/6)
    
    Abstract
    In this paper, I have traced a series of evolutionary adaptations of FOL motivated entirely by its use by knowledge engineers to represent and share information on the Web culminating in the development of Common Logic. While the primary goal in this paper has been to document this evolution, it is arguable, I think that CL's syntactic and semantic egalitarianism better realizes the goal "topic neutrality" that a logic should ideally exemplify - understood, at least in part, as the idea that logic should as far as possible not itself embody any metaphysical presuppositions. Instead of retaining the traditional metaphysical divisions of FOL that reflect its Fregean origins, CL begins as it were with a single, metaphysically homogeneous domain in which, potentially, anything can play the traditional roles of object, property, relation, and function. Note that the effect of this is not to destroy traditional metaphysical divisions. Rather, it simply to refrain from building those divisions explicitly into one's logic; instead, such divisions are left to the user to introduce and enforce axiomatically in an explicit metaphysical theory.
    Theme
    Semantic Web
  11. McGuinness, D.L.: Ontologies come of age (2003) 0.04
    0.03553481 = product of:
      0.10660443 = sum of:
        0.04816959 = weight(_text_:wide in 3084) [ClassicSimilarity], result of:
          0.04816959 = score(doc=3084,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.24476713 = fieldWeight in 3084, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3084)
        0.05843484 = weight(_text_:web in 3084) [ClassicSimilarity], result of:
          0.05843484 = score(doc=3084,freq=10.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.40312994 = fieldWeight in 3084, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3084)
      0.33333334 = coord(2/6)
    
    Abstract
    Ontologies have moved beyond the domains of library science, philosophy, and knowledge representation. They are now the concerns of marketing departments, CEOs, and mainstream business. Research analyst companies such as Forrester Research report on the critical roles of ontologies in support of browsing and search for e-commerce and in support of interoperability for facilitation of knowledge management and configuration. One now sees ontologies used as central controlled vocabularies that are integrated into catalogues, databases, web publications, knowledge management applications, etc. Large ontologies are essential components in many online applications including search (such as Yahoo and Lycos), e-commerce (such as Amazon and eBay), configuration (such as Dell and PC-Order), etc. One also sees ontologies that have long life spans, sometimes in multiple projects (such as UMLS, SIC codes, etc.). Such diverse usage generates many implications for ontology environments. In this paper, we will discuss ontologies and requirements in their current instantiations on the web today. We will describe some desirable properties of ontologies. We will also discuss how both simple and complex ontologies are being and may be used to support varied applications. We will conclude with a discussion of emerging trends in ontologies and their environments and briefly mention our evolving ontology evolution environment.
    Source
    Spinning the Semantic Web: bringing the World Wide Web to its full potential. Eds.: D. Fensel u.a
    Theme
    Semantic Web
  12. Broekstra, J.; Kampman, A.; Harmelen, F. van: Sesame: a generic architecture for storing and querying RDF and RDF schema (2004) 0.04
    0.03553481 = product of:
      0.10660443 = sum of:
        0.04816959 = weight(_text_:wide in 4403) [ClassicSimilarity], result of:
          0.04816959 = score(doc=4403,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.24476713 = fieldWeight in 4403, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4403)
        0.05843484 = weight(_text_:web in 4403) [ClassicSimilarity], result of:
          0.05843484 = score(doc=4403,freq=10.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.40312994 = fieldWeight in 4403, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4403)
      0.33333334 = coord(2/6)
    
    Abstract
    The resource description framework (RDF) is a W3C recommendation for the formulation of meta-data on the World Wide Web. RDF Schema (RDFS) extends this standard with the means to specify domain vocabulary and object structures. These techniques will enable the enrichment of the Web with machine-processable semantics, thus giving rise to what has been dubbed the Semantic Web. We have developed Sesame, an architecture for storage and querying of RDF and RDFS information. Sesame allows persistent storage of RDF data and schema information, and provides access methods to that information through export and querying modules. It features ways of caching information and offers support for concurrency control. This chapter is organized as follows: In Section 5.2 we discuss why a query language specifically tailored to RDF and RDFS is needed, over and above existing query languages such as XQuery. In Section 5.3 we look at Sesame's modular architecture in some detail. In Section 5.4 we give an overview of the SAIL API and a brief comparison to other RDF API approaches. Section 5.5 discusses our experiences with Sesame to date, and Section 5.6 looks into possible future developments. Finally, we provide our conclusions in Section 5.7.
    Source
    Towards the semantic Web: ontology-driven knowledge management. Eds.: J. Davies, u.a
    Theme
    Semantic Web
  13. Fernández, M.; Cantador, I.; López, V.; Vallet, D.; Castells, P.; Motta, E.: Semantically enhanced Information Retrieval : an ontology-based approach (2011) 0.03
    0.033748515 = product of:
      0.10124554 = sum of:
        0.05449767 = weight(_text_:wide in 230) [ClassicSimilarity], result of:
          0.05449767 = score(doc=230,freq=4.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.2769224 = fieldWeight in 230, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=230)
        0.04674787 = weight(_text_:web in 230) [ClassicSimilarity], result of:
          0.04674787 = score(doc=230,freq=10.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.32250395 = fieldWeight in 230, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=230)
      0.33333334 = coord(2/6)
    
    Abstract
    Currently, techniques for content description and query processing in Information Retrieval (IR) are based on keywords, and therefore provide limited capabilities to capture the conceptualizations associated with user needs and contents. Aiming to solve the limitations of keyword-based models, the idea of conceptual search, understood as searching by meanings rather than literal strings, has been the focus of a wide body of research in the IR field. More recently, it has been used as a prototypical scenario (or even envisioned as a potential "killer app") in the Semantic Web (SW) vision, since its emergence in the late nineties. However, current approaches to semantic search developed in the SW area have not yet taken full advantage of the acquired knowledge, accumulated experience, and technological sophistication achieved through several decades of work in the IR field. Starting from this position, this work investigates the definition of an ontology-based IR model, oriented to the exploitation of domain Knowledge Bases to support semantic search capabilities in large document repositories, stressing on the one hand the use of fully fledged ontologies in the semantic-based perspective, and on the other hand the consideration of unstructured content as the target search space. The major contribution of this work is an innovative, comprehensive semantic search model, which extends the classic IR model, addresses the challenges of the massive and heterogeneous Web environment, and integrates the benefits of both keyword and semantic-based search. Additional contributions include: an innovative rank fusion technique that minimizes the undesired effects of knowledge sparseness on the yet juvenile SW, and the creation of a large-scale evaluation benchmark, based on TREC IR evaluation standards, which allows a rigorous comparison between IR and SW approaches. Conducted experiments show that our semantic search model obtained comparable and better performance results (in terms of MAP and P@10 values) than the best TREC automatic system.
    Source
    Web semantics: science, services and agents on the World Wide Web. 9(2011) no.4, S.434-452
    Theme
    Semantic Web
  14. Kiryakov, A.; Popov, B.; Terziev, I.; Manov, D.; Ognyanoff, D.: Semantic annotation, indexing, and retrieval (2004) 0.03
    0.032555856 = product of:
      0.09766757 = sum of:
        0.03853567 = weight(_text_:wide in 700) [ClassicSimilarity], result of:
          0.03853567 = score(doc=700,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.1958137 = fieldWeight in 700, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=700)
        0.059131898 = weight(_text_:web in 700) [ClassicSimilarity], result of:
          0.059131898 = score(doc=700,freq=16.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.4079388 = fieldWeight in 700, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=700)
      0.33333334 = coord(2/6)
    
    Abstract
    The Semantic Web realization depends on the availability of a critical mass of metadata for the web content, associated with the respective formal knowledge about the world. We claim that the Semantic Web, at its current stage of development, is in a state of a critical need of metadata generation and usage schemata that are specific, well-defined and easy to understand. This paper introduces our vision for a holistic architecture for semantic annotation, indexing, and retrieval of documents with regard to extensive semantic repositories. A system (called KIM), implementing this concept, is presented in brief and it is used for the purposes of evaluation and demonstration. A particular schema for semantic annotation with respect to real-world entities is proposed. The underlying philosophy is that a practical semantic annotation is impossible without some particular knowledge modelling commitments. Our understanding is that a system for such semantic annotation should be based upon a simple model of real-world entity classes, complemented with extensive instance knowledge. To ensure the efficiency, ease of sharing, and reusability of the metadata, we introduce an upper-level ontology (of about 250 classes and 100 properties), which starts with some basic philosophical distinctions and then goes down to the most common entity types (people, companies, cities, etc.). Thus it encodes many of the domain-independent commonsense concepts and allows straightforward domain-specific extensions. On the basis of the ontology, a large-scale knowledge base of entity descriptions is bootstrapped, and further extended and maintained. Currently, the knowledge bases usually scales between 105 and 106 descriptions. Finally, this paper presents a semantically enhanced information extraction system, which provides automatic semantic annotation with references to classes in the ontology and to instances. The system has been running over a continuously growing document collection (currently about 0.5 million news articles), so it has been under constant testing and evaluation for some time now. On the basis of these semantic annotations, we perform semantic based indexing and retrieval where users can mix traditional information retrieval (IR) queries and ontology-based ones. We argue that such large-scale, fully automatic methods are essential for the transformation of the current largely textual web into a Semantic Web.
    Source
    Web semantics: science, services and agents on the World Wide Web. 2(2004) no.1, S.49-79
    Theme
    Semantic Web
  15. Corcho, O.; Poveda-Villalón, M.; Gómez-Pérez, A.: Ontology engineering in the era of linked data (2015) 0.03
    0.03253942 = product of:
      0.09761825 = sum of:
        0.05174041 = weight(_text_:web in 3293) [ClassicSimilarity], result of:
          0.05174041 = score(doc=3293,freq=4.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.35694647 = fieldWeight in 3293, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3293)
        0.04587784 = weight(_text_:computer in 3293) [ClassicSimilarity], result of:
          0.04587784 = score(doc=3293,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.28263903 = fieldWeight in 3293, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3293)
      0.33333334 = coord(2/6)
    
    Abstract
    Ontology engineering encompasses the method, tools and techniques used to develop ontologies. Without requiring ontologies, linked data is driving a paradigm shift, bringing benefits and drawbacks to the publishing world. Ontologies may be heavyweight, supporting deep understanding of a domain, or lightweight, suited to simple classification of concepts and more adaptable for linked data. They also vary in domain specificity, usability and reusabilty. Hybrid vocabularies drawing elements from diverse sources often suffer from internally incompatible semantics. To serve linked data purposes, ontology engineering teams require a range of skills in philosophy, computer science, web development, librarianship and domain expertise.
    Theme
    Semantic Web
  16. Breslin, J.G.: Social semantic information spaces (2009) 0.03
    0.032260682 = product of:
      0.09678204 = sum of:
        0.064012155 = weight(_text_:web in 3377) [ClassicSimilarity], result of:
          0.064012155 = score(doc=3377,freq=12.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.4416067 = fieldWeight in 3377, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3377)
        0.03276989 = weight(_text_:computer in 3377) [ClassicSimilarity], result of:
          0.03276989 = score(doc=3377,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.20188503 = fieldWeight in 3377, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3377)
      0.33333334 = coord(2/6)
    
    Abstract
    The structural and syntactic web put in place in the early 90s is still much the same as what we use today: resources (web pages, files, etc.) connected by untyped hyperlinks. By untyped, we mean that there is no easy way for a computer to figure out what a link between two pages means - for example, on the W3C website, there are hundreds of links to the various organisations that are registered members of the association, but there is nothing explicitly saying that the link is to an organisation that is a "member of" the W3C or what type of organisation is represented by the link. On John's work page, he links to many papers he has written, but it does not explicitly say that he is the author of those papers or that he wrote such-and-such when he was working at a particular university. In fact, the Web was envisaged to be much more, as one can see from the image in Fig. 1 which is taken from Tim Berners Lee's original outline for the Web in 1989, entitled "Information Management: A Proposal". In this, all the resources are connected by links describing the type of relationships, e.g. "wrote", "describe", "refers to", etc. This is a precursor to the Semantic Web which we will come back to later.
    Theme
    Semantic Web
  17. Manaf, N.A. Abdul; Bechhofer, S.; Stevens, R.: ¬The current state of SKOS vocabularies on the Web (2012) 0.03
    0.032260682 = product of:
      0.09678204 = sum of:
        0.064012155 = weight(_text_:web in 266) [ClassicSimilarity], result of:
          0.064012155 = score(doc=266,freq=12.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.4416067 = fieldWeight in 266, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=266)
        0.03276989 = weight(_text_:computer in 266) [ClassicSimilarity], result of:
          0.03276989 = score(doc=266,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.20188503 = fieldWeight in 266, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=266)
      0.33333334 = coord(2/6)
    
    Abstract
    We present a survey of the current state of Simple Knowledge Organization System (SKOS) vocabularies on the Web. Candidate vocabularies were gathered through collections and web crawling, with 478 identified as complying to a given definition of a SKOS vocabulary. Analyses were then conducted that included investigation of the use of SKOS constructs; the use of SKOS semantic relations and lexical labels; and the structure of vocabularies in terms of the hierarchical and associative relations, branching factors and the depth of the vocabularies. Even though SKOS concepts are considered to be the core of SKOS vocabularies, our findings were that not all SKOS vocabularies published explicitly declared SKOS concepts in the vocabularies. Almost one-third of th SKOS vocabularies collected fall into the category of term lists, with no use of any SKOS semantic relations. As concept labelling is core to SKOS vocabularies, a surprising find is that not all SKOS vocabularies use SKOS lexical labels, whether skos:prefLabel or skos:altLabel, for their concepts. The branching factors and maximum depth of the vocabularies have no direct relationship to the size of the vocabularies. We also observed some common modelling slips found in SKOS vocabularies. The survey is useful when considering, for example, converting artefacts such as OWL ontologies into SKOS, where a definition of typicality of SKOS vocabularies could be used to guide the conversion. Moreover, the survey results can serve to provide a better understanding of the modelling styles of the SKOS vocabularies published on the Web, especially when considering the creation of applications that utilize these vocabularies.
    Series
    Lecture notes in computer science; 7295
    Source
    9th Extended Semantic Web Conference (ESWC), 2012-05-27/2012-05-31 in Hersonissos, Crete, Greece. Eds.: Elena Simperl et al
    Theme
    Semantic Web
  18. Rousset, M.-C.; Atencia, M.; David, J.; Jouanot, F.; Ulliana, F.; Palombi, O.: Datalog revisited for reasoning in linked data (2017) 0.03
    0.032260682 = product of:
      0.09678204 = sum of:
        0.064012155 = weight(_text_:web in 3936) [ClassicSimilarity], result of:
          0.064012155 = score(doc=3936,freq=12.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.4416067 = fieldWeight in 3936, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3936)
        0.03276989 = weight(_text_:computer in 3936) [ClassicSimilarity], result of:
          0.03276989 = score(doc=3936,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.20188503 = fieldWeight in 3936, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3936)
      0.33333334 = coord(2/6)
    
    Abstract
    Linked Data provides access to huge, continuously growing amounts of open data and ontologies in RDF format that describe entities, links and properties on those entities. Equipping Linked Data with inference paves the way to make the Semantic Web a reality. In this survey, we describe a unifying framework for RDF ontologies and databases that we call deductive RDF triplestores. It consists in equipping RDF triplestores with Datalog inference rules. This rule language allows to capture in a uniform manner OWL constraints that are useful in practice, such as property transitivity or symmetry, but also domain-specific rules with practical relevance for users in many domains of interest. The expressivity and the genericity of this framework is illustrated for modeling Linked Data applications and for developing inference algorithms. In particular, we show how it allows to model the problem of data linkage in Linked Data as a reasoning problem on possibly decentralized data. We also explain how it makes possible to efficiently extract expressive modules from Semantic Web ontologies and databases with formal guarantees, whilst effectively controlling their succinctness. Experiments conducted on real-world datasets have demonstrated the feasibility of this approach and its usefulness in practice for data integration and information extraction.
    Series
    Lecture Notes in Computer Scienc;10370) (Information Systems and Applications, incl. Internet/Web, and HCI
    Source
    Reasoning Web: Semantic Interoperability on the Web, 13th International Summer School 2017, London, UK, July 7-11, 2017, Tutorial Lectures. Eds.: Ianni, G. et al
    Theme
    Semantic Web
  19. Synak, M.; Dabrowski, M.; Kruk, S.R.: Semantic Web and ontologies (2009) 0.03
    0.032164216 = product of:
      0.09649264 = sum of:
        0.07242149 = weight(_text_:web in 3376) [ClassicSimilarity], result of:
          0.07242149 = score(doc=3376,freq=6.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.49962097 = fieldWeight in 3376, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=3376)
        0.024071148 = product of:
          0.048142295 = sum of:
            0.048142295 = weight(_text_:22 in 3376) [ClassicSimilarity], result of:
              0.048142295 = score(doc=3376,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.30952093 = fieldWeight in 3376, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3376)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    This chapter presents ontologies and their role in the creation of the Semantic Web. Ontologies hold special interest, because they are very closely related to the way we understand the world. They provide common understanding, the very first step to successful communication. In following sections, we will present ontologies, how they are created and used. We will describe available tools for specifying and working with ontologies.
    Date
    31. 7.2010 16:58:22
    Theme
    Semantic Web
  20. Allocca, C.; Aquin, M.d'; Motta, E.: Impact of using relationships between ontologies to enhance the ontology search results (2012) 0.03
    0.026011107 = product of:
      0.07803332 = sum of:
        0.045263432 = weight(_text_:web in 264) [ClassicSimilarity], result of:
          0.045263432 = score(doc=264,freq=6.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.3122631 = fieldWeight in 264, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=264)
        0.03276989 = weight(_text_:computer in 264) [ClassicSimilarity], result of:
          0.03276989 = score(doc=264,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.20188503 = fieldWeight in 264, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=264)
      0.33333334 = coord(2/6)
    
    Abstract
    Using semantic web search engines, such as Watson, Swoogle or Sindice, to find ontologies is a complex exploratory activity. It generally requires formulating multiple queries, browsing pages of results, and assessing the returned ontologies against each other to obtain a relevant and adequate subset of ontologies for the intended use. Our hypothesis is that at least some of the difficulties related to searching ontologies stem from the lack of structure in the search results, where ontologies that are implicitly related to each other are presented as disconnected and shown on different result pages. In earlier publications we presented a software framework, Kannel, which is able to automatically detect and make explicit relationships between ontologies in large ontology repositories. In this paper, we present a study that compares the use of the Watson ontology search engine with an extension,Watson+Kannel, which provides information regarding the various relationships occurring between the result ontologies. We evaluate Watson+Kannel by demonstrating through various indicators that explicit relationships between ontologies improve users' efficiency in ontology search, thus validating our hypothesis.
    Series
    Lecture notes in computer science; 7295
    Source
    9th Extended Semantic Web Conference (ESWC), 2012-05-27/2012-05-31 in Hersonissos, Crete, Greece. Eds.: Elena Simperl et al
    Theme
    Semantic Web

Years

Languages

  • e 49
  • d 6

Types