Search (31 results, page 2 of 2)

  • × theme_ss:"Semantic Web"
  • × theme_ss:"Wissensrepräsentation"
  • × year_i:[2010 TO 2020}
  1. Mirizzi, R.: Exploratory browsing in the Web of Data (2011) 0.00
    2.3021935E-4 = product of:
      0.00345329 = sum of:
        0.00345329 = product of:
          0.00690658 = sum of:
            0.00690658 = weight(_text_:information in 4803) [ClassicSimilarity], result of:
              0.00690658 = score(doc=4803,freq=8.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.13576832 = fieldWeight in 4803, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4803)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Thanks to the recent Linked Data initiative, the foundations of the Semantic Web have been built. Shared, open and linked RDF datasets give us the possibility to exploit both the strong theoretical results and the robust technologies and tools developed since the seminal paper in the Semantic Web appeared in 2001. In a simplistic way, we may think at the Semantic Web as a ultra large distributed database we can query to get information coming from different sources. In fact, every dataset exposes a SPARQL endpoint to make the data accessible through exact queries. If we know the URI of the famous actress Nicole Kidman in DBpedia we may retrieve all the movies she acted with a simple SPARQL query. Eventually we may aggregate this information with users ratings and genres from IMDB. Even though these are very exciting results and applications, there is much more behind the curtains. Datasets come with the description of their schema structured in an ontological way. Resources refer to classes which are in turn organized in well structured and rich ontologies. Exploiting also this further feature we go beyond the notion of a distributed database and we can refer to the Semantic Web as a distributed knowledge base. If in our knowledge base we have that Paris is located in France (ontological level) and that Moulin Rouge! is set in Paris (data level) we may query the Semantic Web (interpreted as a set of interconnected datasets and related ontologies) to return all the movies starred by Nicole Kidman set in France and Moulin Rouge! will be in the final result set. The ontological level makes possible to infer new relations among data.
    The Linked Data initiative and the state of the art in semantic technologies led off all brand new search and mash-up applications. The basic idea is to have smarter lookup services for a huge, distributed and social knowledge base. All these applications catch and (re)propose, under a semantic data perspective, the view of the classical Web as a distributed collection of documents to retrieve. The interlinked nature of the Web, and consequently of the Semantic Web, is exploited (just) to collect and aggregate data coming from different sources. Of course, this is a big step forward in search and Web technologies, but if we limit our investi- gation to retrieval tasks, we miss another important feature of the current Web: browsing and in particular exploratory browsing (a.k.a. exploratory search). Thanks to its hyperlinked nature, the Web defined a new way of browsing documents and knowledge: selection by lookup, navigation and trial-and-error tactics were, and still are, exploited by users to search for relevant information satisfying some initial requirements. The basic assumptions behind a lookup search, typical of Information Retrieval (IR) systems, are no more valid in an exploratory browsing context. An IR system, such as a search engine, assumes that: the user has a clear picture of what she is looking for ; she knows the terminology of the specific knowledge space. On the other side, as argued in, the main challenges in exploratory search can be summarized as: support querying and rapid query refinement; other facets and metadata-based result filtering; leverage search context; support learning and understanding; other visualization to support insight/decision making; facilitate collaboration. In Section 3 we will show two applications for exploratory search in the Semantic Web addressing some of the above challenges.
  2. Corcho, O.; Poveda-Villalón, M.; Gómez-Pérez, A.: Ontology engineering in the era of linked data (2015) 0.00
    2.3021935E-4 = product of:
      0.00345329 = sum of:
        0.00345329 = product of:
          0.00690658 = sum of:
            0.00690658 = weight(_text_:information in 3293) [ClassicSimilarity], result of:
              0.00690658 = score(doc=3293,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.13576832 = fieldWeight in 3293, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3293)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Source
    Bulletin of the Association for Information Science and Technology. 41(2015) no.4, S.13-17
  3. Lukasiewicz, T.: Uncertainty reasoning for the Semantic Web (2017) 0.00
    2.3021935E-4 = product of:
      0.00345329 = sum of:
        0.00345329 = product of:
          0.00690658 = sum of:
            0.00690658 = weight(_text_:information in 3939) [ClassicSimilarity], result of:
              0.00690658 = score(doc=3939,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.13576832 = fieldWeight in 3939, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3939)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Series
    Lecture Notes in Computer Scienc;10370) (Information Systems and Applications, incl. Internet/Web, and HCI
  4. Menzel, C.: Knowledge representation, the World Wide Web, and the evolution of logic (2011) 0.00
    1.9733087E-4 = product of:
      0.002959963 = sum of:
        0.002959963 = product of:
          0.005919926 = sum of:
            0.005919926 = weight(_text_:information in 761) [ClassicSimilarity], result of:
              0.005919926 = score(doc=761,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.116372846 = fieldWeight in 761, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=761)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    In this paper, I have traced a series of evolutionary adaptations of FOL motivated entirely by its use by knowledge engineers to represent and share information on the Web culminating in the development of Common Logic. While the primary goal in this paper has been to document this evolution, it is arguable, I think that CL's syntactic and semantic egalitarianism better realizes the goal "topic neutrality" that a logic should ideally exemplify - understood, at least in part, as the idea that logic should as far as possible not itself embody any metaphysical presuppositions. Instead of retaining the traditional metaphysical divisions of FOL that reflect its Fregean origins, CL begins as it were with a single, metaphysically homogeneous domain in which, potentially, anything can play the traditional roles of object, property, relation, and function. Note that the effect of this is not to destroy traditional metaphysical divisions. Rather, it simply to refrain from building those divisions explicitly into one's logic; instead, such divisions are left to the user to introduce and enforce axiomatically in an explicit metaphysical theory.
  5. Fernández, M.; Cantador, I.; López, V.; Vallet, D.; Castells, P.; Motta, E.: Semantically enhanced Information Retrieval : an ontology-based approach (2011) 0.00
    1.8604532E-4 = product of:
      0.0027906797 = sum of:
        0.0027906797 = product of:
          0.0055813594 = sum of:
            0.0055813594 = weight(_text_:information in 230) [ClassicSimilarity], result of:
              0.0055813594 = score(doc=230,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.10971737 = fieldWeight in 230, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.03125 = fieldNorm(doc=230)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Currently, techniques for content description and query processing in Information Retrieval (IR) are based on keywords, and therefore provide limited capabilities to capture the conceptualizations associated with user needs and contents. Aiming to solve the limitations of keyword-based models, the idea of conceptual search, understood as searching by meanings rather than literal strings, has been the focus of a wide body of research in the IR field. More recently, it has been used as a prototypical scenario (or even envisioned as a potential "killer app") in the Semantic Web (SW) vision, since its emergence in the late nineties. However, current approaches to semantic search developed in the SW area have not yet taken full advantage of the acquired knowledge, accumulated experience, and technological sophistication achieved through several decades of work in the IR field. Starting from this position, this work investigates the definition of an ontology-based IR model, oriented to the exploitation of domain Knowledge Bases to support semantic search capabilities in large document repositories, stressing on the one hand the use of fully fledged ontologies in the semantic-based perspective, and on the other hand the consideration of unstructured content as the target search space. The major contribution of this work is an innovative, comprehensive semantic search model, which extends the classic IR model, addresses the challenges of the massive and heterogeneous Web environment, and integrates the benefits of both keyword and semantic-based search. Additional contributions include: an innovative rank fusion technique that minimizes the undesired effects of knowledge sparseness on the yet juvenile SW, and the creation of a large-scale evaluation benchmark, based on TREC IR evaluation standards, which allows a rigorous comparison between IR and SW approaches. Conducted experiments show that our semantic search model obtained comparable and better performance results (in terms of MAP and P@10 values) than the best TREC automatic system.
  6. ¬The Semantic Web - ISWC 2010 : 9th International Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised Selected Papers, Part 2. (2010) 0.00
    1.6444239E-4 = product of:
      0.0024666358 = sum of:
        0.0024666358 = product of:
          0.0049332716 = sum of:
            0.0049332716 = weight(_text_:information in 4706) [ClassicSimilarity], result of:
              0.0049332716 = score(doc=4706,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.09697737 = fieldWeight in 4706, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4706)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    The two-volume set LNCS 6496 and 6497 constitutes the refereed proceedings of the 9th International Semantic Web Conference, ISWC 2010, held in Shanghai, China, during November 7-11, 2010. Part I contains 51 papers out of 578 submissions to the research track. Part II contains 18 papers out of 66 submissions to the semantic Web in-use track, 6 papers out of 26 submissions to the doctoral consortium track, and also 4 invited talks. Each submitted paper were carefully reviewed. The International Semantic Web Conferences (ISWC) constitute the major international venue where the latest research results and technical innovations on all aspects of the Semantic Web are presented. ISWC brings together researchers, practitioners, and users from the areas of artificial intelligence, databases, social networks, distributed computing, Web engineering, information systems, natural language processing, soft computing, and human computer interaction to discuss the major challenges and proposed solutions, the success stories and failures, as well the visions that can advance research and drive innovation in the Semantic Web.
  7. Iorio, A. di; Peroni, S.; Vitali, F.: ¬A Semantic Web approach to everyday overlapping markup (2011) 0.00
    1.6444239E-4 = product of:
      0.0024666358 = sum of:
        0.0024666358 = product of:
          0.0049332716 = sum of:
            0.0049332716 = weight(_text_:information in 4749) [ClassicSimilarity], result of:
              0.0049332716 = score(doc=4749,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.09697737 = fieldWeight in 4749, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4749)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.9, S.1696-1716
  8. Allocca, C.; Aquin, M.d'; Motta, E.: Impact of using relationships between ontologies to enhance the ontology search results (2012) 0.00
    1.6444239E-4 = product of:
      0.0024666358 = sum of:
        0.0024666358 = product of:
          0.0049332716 = sum of:
            0.0049332716 = weight(_text_:information in 264) [ClassicSimilarity], result of:
              0.0049332716 = score(doc=264,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.09697737 = fieldWeight in 264, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=264)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Using semantic web search engines, such as Watson, Swoogle or Sindice, to find ontologies is a complex exploratory activity. It generally requires formulating multiple queries, browsing pages of results, and assessing the returned ontologies against each other to obtain a relevant and adequate subset of ontologies for the intended use. Our hypothesis is that at least some of the difficulties related to searching ontologies stem from the lack of structure in the search results, where ontologies that are implicitly related to each other are presented as disconnected and shown on different result pages. In earlier publications we presented a software framework, Kannel, which is able to automatically detect and make explicit relationships between ontologies in large ontology repositories. In this paper, we present a study that compares the use of the Watson ontology search engine with an extension,Watson+Kannel, which provides information regarding the various relationships occurring between the result ontologies. We evaluate Watson+Kannel by demonstrating through various indicators that explicit relationships between ontologies improve users' efficiency in ontology search, thus validating our hypothesis.
  9. Guns, R.: Tracing the origins of the semantic web (2013) 0.00
    1.6444239E-4 = product of:
      0.0024666358 = sum of:
        0.0024666358 = product of:
          0.0049332716 = sum of:
            0.0049332716 = weight(_text_:information in 1093) [ClassicSimilarity], result of:
              0.0049332716 = score(doc=1093,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.09697737 = fieldWeight in 1093, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1093)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.10, S.2173-2181
  10. ¬The Semantic Web - ISWC 2010 : 9th International Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised Selected Papers, Part I. (2010) 0.00
    1.3155391E-4 = product of:
      0.0019733086 = sum of:
        0.0019733086 = product of:
          0.0039466172 = sum of:
            0.0039466172 = weight(_text_:information in 4707) [ClassicSimilarity], result of:
              0.0039466172 = score(doc=4707,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.0775819 = fieldWeight in 4707, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4707)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    The two-volume set LNCS 6496 and 6497 constitutes the refereed proceedings of the 9th International Semantic Web Conference, ISWC 2010, held in Shanghai, China, during November 7-11, 2010. Part I contains 51 papers out of 578 submissions to the research track. Part II contains 18 papers out of 66 submissions to the semantic Web in-use track, 6 papers out of 26 submissions to the doctoral consortium track, and also 4 invited talks. Each submitted paper were carefully reviewed. The International Semantic Web Conferences (ISWC) constitute the major international venue where the latest research results and technical innovations on all aspects of the Semantic Web are presented. ISWC brings together researchers, practitioners, and users from the areas of artificial intelligence, databases, social networks, distributed computing, Web engineering, information systems, natural language processing, soft computing, and human computer interaction to discuss the major challenges and proposed solutions, the success stories and failures, as well the visions that can advance research and drive innovation in the Semantic Web.
  11. Baker, T.; Bermès, E.; Coyle, K.; Dunsire, G.; Isaac, A.; Murray, P.; Panzer, M.; Schneider, J.; Singer, R.; Summers, E.; Waites, W.; Young, J.; Zeng, M.: Library Linked Data Incubator Group Final Report (2011) 0.00
    1.3155391E-4 = product of:
      0.0019733086 = sum of:
        0.0019733086 = product of:
          0.0039466172 = sum of:
            0.0039466172 = weight(_text_:information in 4796) [ClassicSimilarity], result of:
              0.0039466172 = score(doc=4796,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.0775819 = fieldWeight in 4796, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4796)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    The mission of the W3C Library Linked Data Incubator Group, chartered from May 2010 through August 2011, has been "to help increase global interoperability of library data on the Web, by bringing together people involved in Semantic Web activities - focusing on Linked Data - in the library community and beyond, building on existing initiatives, and identifying collaboration tracks for the future." In Linked Data [LINKEDDATA], data is expressed using standards such as Resource Description Framework (RDF) [RDF], which specifies relationships between things, and Uniform Resource Identifiers (URIs, or "Web addresses") [URI]. This final report of the Incubator Group examines how Semantic Web standards and Linked Data principles can be used to make the valuable information assets that library create and curate - resources such as bibliographic data, authorities, and concept schemes - more visible and re-usable outside of their original library context on the wider Web. The Incubator Group began by eliciting reports on relevant activities from parties ranging from small, independent projects to national library initiatives (see the separate report, Library Linked Data Incubator Group: Use Cases) [USECASE]. These use cases provided the starting point for the work summarized in the report: an analysis of the benefits of library Linked Data, a discussion of current issues with regard to traditional library data, existing library Linked Data initiatives, and legal rights over library data; and recommendations for next steps. The report also summarizes the results of a survey of current Linked Data technologies and an inventory of library Linked Data resources available today (see also the more detailed report, Library Linked Data Incubator Group: Datasets, Value Vocabularies, and Metadata Element Sets) [VOCABDATASET].

Languages

  • e 26
  • d 5

Types

Subjects