Search (93 results, page 1 of 5)

  • × theme_ss:"Semantic Web"
  • × type_ss:"a"
  • × year_i:[2010 TO 2020}
  1. Papadakis, I. et al.: Highlighting timely information in libraries through social and semantic Web technologies (2016) 0.02
    0.022905817 = product of:
      0.045811635 = sum of:
        0.045811635 = product of:
          0.06871745 = sum of:
            0.0067215143 = weight(_text_:a in 2090) [ClassicSimilarity], result of:
              0.0067215143 = score(doc=2090,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.12739488 = fieldWeight in 2090, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2090)
            0.061995935 = weight(_text_:22 in 2090) [ClassicSimilarity], result of:
              0.061995935 = score(doc=2090,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.38690117 = fieldWeight in 2090, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2090)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    Metadata and semantics research: 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings. Eds.: E. Garoufallou
    Type
    a
  2. Hooland, S. van; Verborgh, R.; Wilde, M. De; Hercher, J.; Mannens, E.; Wa, R.Van de: Evaluating the success of vocabulary reconciliation for cultural heritage collections (2013) 0.02
    0.01540514 = product of:
      0.03081028 = sum of:
        0.03081028 = product of:
          0.04621542 = sum of:
            0.009017859 = weight(_text_:a in 662) [ClassicSimilarity], result of:
              0.009017859 = score(doc=662,freq=10.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.1709182 = fieldWeight in 662, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=662)
            0.03719756 = weight(_text_:22 in 662) [ClassicSimilarity], result of:
              0.03719756 = score(doc=662,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.23214069 = fieldWeight in 662, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=662)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    The concept of Linked Data has made its entrance in the cultural heritage sector due to its potential use for the integration of heterogeneous collections and deriving additional value out of existing metadata. However, practitioners and researchers alike need a better understanding of what outcome they can reasonably expect of the reconciliation process between their local metadata and established controlled vocabularies which are already a part of the Linked Data cloud. This paper offers an in-depth analysis of how a locally developed vocabulary can be successfully reconciled with the Library of Congress Subject Headings (LCSH) and the Arts and Architecture Thesaurus (AAT) through the help of a general-purpose tool for interactive data transformation (OpenRefine). Issues negatively affecting the reconciliation process are identified and solutions are proposed in order to derive maximum value from existing metadata and controlled vocabularies in an automated manner.
    Date
    22. 3.2013 19:29:20
    Type
    a
  3. Prud'hommeaux, E.; Gayo, E.: RDF ventures to boldly meet your most pedestrian needs (2015) 0.01
    0.014727588 = product of:
      0.029455176 = sum of:
        0.029455176 = product of:
          0.044182763 = sum of:
            0.006985203 = weight(_text_:a in 2024) [ClassicSimilarity], result of:
              0.006985203 = score(doc=2024,freq=6.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.13239266 = fieldWeight in 2024, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2024)
            0.03719756 = weight(_text_:22 in 2024) [ClassicSimilarity], result of:
              0.03719756 = score(doc=2024,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.23214069 = fieldWeight in 2024, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2024)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Defined in 1999 and paired with XML, the Resource Description Framework (RDF) has been cast as an RDF Schema, producing data that is well-structured but not validated, permitting certain illogical relationships. When stakeholders convened in 2014 to consider solutions to the data validation challenge, a W3C working group proposed Resource Shapes and Shape Expressions to describe the properties expected for an RDF node. Resistance rose from concerns about data and schema reuse, key principles in RDF. Ideally data types and properties are designed for broad use, but they are increasingly adopted with local restrictions for specific purposes. Resource Shapes are commonly treated as record classes, standing in for data structures but losing flexibility for later reuse. Of various solutions to the resulting tensions, the concept of record classes may be the most reasonable basis for agreement, satisfying stakeholders' objectives while allowing for variations with constraints.
    Footnote
    Contribution to a special section "Linked data and the charm of weak semantics".
    Source
    Bulletin of the Association for Information Science and Technology. 41(2015) no.4, S.18-22
    Type
    a
  4. Danowski, P.; Goldfarb, D.; Schaffner, V.; Seidler, W.: Linked (Open) Data - Bibliographische Daten im Semantic Web : Bericht der AG Linked Data an die Verbundvollversammlung (16. Mai 2013) (2013) 0.01
    0.013570441 = product of:
      0.027140882 = sum of:
        0.027140882 = product of:
          0.04071132 = sum of:
            0.0095056575 = weight(_text_:a in 814) [ClassicSimilarity], result of:
              0.0095056575 = score(doc=814,freq=4.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.18016359 = fieldWeight in 814, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=814)
            0.031205663 = weight(_text_:h in 814) [ClassicSimilarity], result of:
              0.031205663 = score(doc=814,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.27449545 = fieldWeight in 814, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.078125 = fieldNorm(doc=814)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Location
    A
    Source
    Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare. 66(2013) H.3/4, S.559-587
    Type
    a
  5. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.01
    0.01257316 = product of:
      0.02514632 = sum of:
        0.02514632 = product of:
          0.03771948 = sum of:
            0.0067215143 = weight(_text_:a in 4553) [ClassicSimilarity], result of:
              0.0067215143 = score(doc=4553,freq=8.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.12739488 = fieldWeight in 4553, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
            0.030997967 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
              0.030997967 = score(doc=4553,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.19345059 = fieldWeight in 4553, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Semantic Web knowledge representation standards, and in particular RDF and OWL, often come endowed with a formal semantics which is considered to be of fundamental importance for the field. Reasoning, i.e., the drawing of logical inferences from knowledge expressed in such standards, is traditionally based on logical deductive methods and algorithms which can be proven to be sound and complete and terminating, i.e. correct in a very strong sense. For various reasons, though, in particular the scalability issues arising from the ever increasing amounts of Semantic Web data available and the inability of deductive algorithms to deal with noise in the data, it has been argued that alternative means of reasoning should be investigated which bear high promise for high scalability and better robustness. From this perspective, deductive algorithms can be considered the gold standard regarding correctness against which alternative methods need to be tested. In this paper, we show that it is possible to train a Deep Learning system on RDF knowledge graphs, such that it is able to perform reasoning over new RDF knowledge graphs, with high precision and recall compared to the deductive gold standard.
    Date
    16.11.2018 14:22:01
    Type
    a
  6. Zhitomirsky-Geffet, M.; Bar-Ilan, J.: Towards maximal unification of semantically diverse ontologies for controversial domains (2014) 0.01
    0.011619406 = product of:
      0.023238812 = sum of:
        0.023238812 = product of:
          0.034858216 = sum of:
            0.010059842 = weight(_text_:a in 1634) [ClassicSimilarity], result of:
              0.010059842 = score(doc=1634,freq=28.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.19066721 = fieldWeight in 1634, product of:
                  5.2915025 = tf(freq=28.0), with freq of:
                    28.0 = termFreq=28.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1634)
            0.024798373 = weight(_text_:22 in 1634) [ClassicSimilarity], result of:
              0.024798373 = score(doc=1634,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.15476047 = fieldWeight in 1634, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1634)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - Ontologies are prone to wide semantic variability due to subjective points of view of their composers. The purpose of this paper is to propose a new approach for maximal unification of diverse ontologies for controversial domains by their relations. Design/methodology/approach - Effective matching or unification of multiple ontologies for a specific domain is crucial for the success of many semantic web applications, such as semantic information retrieval and organization, document tagging, summarization and search. To this end, numerous automatic and semi-automatic techniques were proposed in the past decade that attempt to identify similar entities, mostly classes, in diverse ontologies for similar domains. Apparently, matching individual entities cannot result in full integration of ontologies' semantics without matching their inter-relations with all other-related classes (and instances). However, semantic matching of ontological relations still constitutes a major research challenge. Therefore, in this paper the authors propose a new paradigm for assessment of maximal possible matching and unification of ontological relations. To this end, several unification rules for ontological relations were devised based on ontological reference rules, and lexical and textual entailment. These rules were semi-automatically implemented to extend a given ontology with semantically matching relations from another ontology for a similar domain. Then, the ontologies were unified through these similar pairs of relations. The authors observe that these rules can be also facilitated to reveal the contradictory relations in different ontologies. Findings - To assess the feasibility of the approach two experiments were conducted with different sets of multiple personal ontologies on controversial domains constructed by trained subjects. The results for about 50 distinct ontology pairs demonstrate a good potential of the methodology for increasing inter-ontology agreement. Furthermore, the authors show that the presented methodology can lead to a complete unification of multiple semantically heterogeneous ontologies. Research limitations/implications - This is a conceptual study that presents a new approach for semantic unification of ontologies by a devised set of rules along with the initial experimental evidence of its feasibility and effectiveness. However, this methodology has to be fully automatically implemented and tested on a larger dataset in future research. Practical implications - This result has implication for semantic search, since a richer ontology, comprised of multiple aspects and viewpoints of the domain of knowledge, enhances discoverability and improves search results. Originality/value - To the best of the knowledge, this is the first study to examine and assess the maximal level of semantic relation-based ontology unification.
    Date
    20. 1.2015 18:30:22
    Type
    a
  7. Brunetti, J.M.; Roberto García, R.: User-centered design and evaluation of overview components for semantic data exploration (2014) 0.01
    0.010637253 = product of:
      0.021274505 = sum of:
        0.021274505 = product of:
          0.031911757 = sum of:
            0.0071133827 = weight(_text_:a in 1626) [ClassicSimilarity], result of:
              0.0071133827 = score(doc=1626,freq=14.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.13482209 = fieldWeight in 1626, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1626)
            0.024798373 = weight(_text_:22 in 1626) [ClassicSimilarity], result of:
              0.024798373 = score(doc=1626,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.15476047 = fieldWeight in 1626, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1626)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - The growing volumes of semantic data available in the web result in the need for handling the information overload phenomenon. The potential of this amount of data is enormous but in most cases it is very difficult for users to visualize, explore and use this data, especially for lay-users without experience with Semantic Web technologies. The paper aims to discuss these issues. Design/methodology/approach - The Visual Information-Seeking Mantra "Overview first, zoom and filter, then details-on-demand" proposed by Shneiderman describes how data should be presented in different stages to achieve an effective exploration. The overview is the first user task when dealing with a data set. The objective is that the user is capable of getting an idea about the overall structure of the data set. Different information architecture (IA) components supporting the overview tasks have been developed, so they are automatically generated from semantic data, and evaluated with end-users. Findings - The chosen IA components are well known to web users, as they are present in most web pages: navigation bars, site maps and site indexes. The authors complement them with Treemaps, a visualization technique for displaying hierarchical data. These components have been developed following an iterative User-Centered Design methodology. Evaluations with end-users have shown that they get easily used to them despite the fact that they are generated automatically from structured data, without requiring knowledge about the underlying semantic technologies, and that the different overview components complement each other as they focus on different information search needs. Originality/value - Obtaining semantic data sets overviews cannot be easily done with the current semantic web browsers. Overviews become difficult to achieve with large heterogeneous data sets, which is typical in the Semantic Web, because traditional IA techniques do not easily scale to large data sets. There is little or no support to obtain overview information quickly and easily at the beginning of the exploration of a new data set. This can be a serious limitation when exploring a data set for the first time, especially for lay-users. The proposal is to reuse and adapt existing IA components to provide this overview to users and show that they can be generated automatically from the thesaurus and ontologies that structure semantic data while providing a comparable user experience to traditional web sites.
    Date
    20. 1.2015 18:30:22
    Type
    a
  8. Nagelschmidt, M.; Meyer, A.; Ehlen, D.: Mit Wiki-Software zum semantischen Web : Modellierungsansätze, Beispiele und Perspektiven (2011) 0.01
    0.009499308 = product of:
      0.018998615 = sum of:
        0.018998615 = product of:
          0.028497923 = sum of:
            0.0066539603 = weight(_text_:a in 4895) [ClassicSimilarity], result of:
              0.0066539603 = score(doc=4895,freq=4.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.12611452 = fieldWeight in 4895, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4895)
            0.021843962 = weight(_text_:h in 4895) [ClassicSimilarity], result of:
              0.021843962 = score(doc=4895,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.19214681 = fieldWeight in 4895, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4895)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    Information - Wissenschaft und Praxis. 62(2011) H.6/7, S.301-313
    Type
    a
  9. Meyer, A.: wiki2rdf: Automatische Extraktion von RDF-Tripeln aus Artikelvolltexten der Wikipedia (2013) 0.01
    0.009499308 = product of:
      0.018998615 = sum of:
        0.018998615 = product of:
          0.028497923 = sum of:
            0.0066539603 = weight(_text_:a in 1017) [ClassicSimilarity], result of:
              0.0066539603 = score(doc=1017,freq=4.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.12611452 = fieldWeight in 1017, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1017)
            0.021843962 = weight(_text_:h in 1017) [ClassicSimilarity], result of:
              0.021843962 = score(doc=1017,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.19214681 = fieldWeight in 1017, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1017)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    Information - Wissenschaft und Praxis. 64(2013) H.2/3, S.115-126
    Type
    a
  10. Fensel, A.: Towards semantic APIs for research data services (2017) 0.01
    0.009499308 = product of:
      0.018998615 = sum of:
        0.018998615 = product of:
          0.028497923 = sum of:
            0.0066539603 = weight(_text_:a in 4439) [ClassicSimilarity], result of:
              0.0066539603 = score(doc=4439,freq=4.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.12611452 = fieldWeight in 4439, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4439)
            0.021843962 = weight(_text_:h in 4439) [ClassicSimilarity], result of:
              0.021843962 = score(doc=4439,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.19214681 = fieldWeight in 4439, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4439)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare. 70(2017) H.2, S.157-169
    Type
    a
  11. Zumstein, P.: ¬Die Rolle des Semantic Web für Bibliotheken : Linked Open Data und mehr: Welche Strategien können hier die Bibliotheken in die Zukunft führen? (2012) 0.01
    0.008849675 = product of:
      0.01769935 = sum of:
        0.01769935 = product of:
          0.026549023 = sum of:
            0.0047050603 = weight(_text_:a in 2450) [ClassicSimilarity], result of:
              0.0047050603 = score(doc=2450,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.089176424 = fieldWeight in 2450, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2450)
            0.021843962 = weight(_text_:h in 2450) [ClassicSimilarity], result of:
              0.021843962 = score(doc=2450,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.19214681 = fieldWeight in 2450, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2450)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    Perspektive Bibliothek. 1(2012) H.1, S.81-102
    Type
    a
  12. Ghorbel, H.; Bahri, A.; Bouaziz, R.: Fuzzy ontologies building platform for Semantic Web : FOB platform (2012) 0.01
    0.008164853 = product of:
      0.016329706 = sum of:
        0.016329706 = product of:
          0.024494559 = sum of:
            0.008891728 = weight(_text_:a in 98) [ClassicSimilarity], result of:
              0.008891728 = score(doc=98,freq=14.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.1685276 = fieldWeight in 98, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=98)
            0.015602832 = weight(_text_:h in 98) [ClassicSimilarity], result of:
              0.015602832 = score(doc=98,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.13724773 = fieldWeight in 98, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=98)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    The unstructured design of Web resources favors human comprehension, but makes difficult the automatic exploitation of the contents of these resources by machines. So, the Semantic Web aims at making the cooperation between human and machine possible, by giving any information a well defined meaning. The first weavings of the Semantic Web are already prepared. Machines become able to treat and understand the data that were accustomed to only visualization, by using ontologies constitute an essential element of the Semantic Web, as they serve as a form of knowledge representation, sharing, and reuse. However, the Web content is subject to imperfection, and crisp ontologies become less suitable to represent concepts with imprecise definitions. To overcome this problem, fuzzy ontologies constitute a promising research orientation. Indeed, the definition of fuzzy ontologies components constitutes an issue that needs to be well treated. It is necessary to have an appropriate methodology of building an operationalization of fuzzy ontological models. This chapter defines a fuzzy ontological model based on fuzzy description logic. This model uses a new approach for the formal description of fuzzy ontologies. This new methodology shows how all the basic components defined for fuzzy ontologies can be constructed.
    Type
    a
  13. Flores-Herr, N.; Sack, H.; Bossert, K.: Suche in Multimediaarchiven von Kultureinrichtungen (2011) 0.01
    0.007585435 = product of:
      0.01517087 = sum of:
        0.01517087 = product of:
          0.022756305 = sum of:
            0.004032909 = weight(_text_:a in 346) [ClassicSimilarity], result of:
              0.004032909 = score(doc=346,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.07643694 = fieldWeight in 346, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=346)
            0.018723397 = weight(_text_:h in 346) [ClassicSimilarity], result of:
              0.018723397 = score(doc=346,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.16469726 = fieldWeight in 346, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.046875 = fieldNorm(doc=346)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Type
    a
  14. Borst, T.: Repositorien auf ihrem Weg in das Semantic Web : semantisch hergeleitete Interoperabilität als Zielstellung für künftige Repository-Entwicklungen (2014) 0.01
    0.007585435 = product of:
      0.01517087 = sum of:
        0.01517087 = product of:
          0.022756305 = sum of:
            0.004032909 = weight(_text_:a in 1555) [ClassicSimilarity], result of:
              0.004032909 = score(doc=1555,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.07643694 = fieldWeight in 1555, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1555)
            0.018723397 = weight(_text_:h in 1555) [ClassicSimilarity], result of:
              0.018723397 = score(doc=1555,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.16469726 = fieldWeight in 1555, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1555)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    Bibliothek: Forschung und Praxis. 38(2014) H.2, S.257-265
    Type
    a
  15. Hanke, M.: Bibliothekarische Klassifikationssysteme im semantischen Web : zu Chancen und Problemen von Linked-data-Repräsentationen ausgewählter Klassifikationssysteme (2014) 0.01
    0.007585435 = product of:
      0.01517087 = sum of:
        0.01517087 = product of:
          0.022756305 = sum of:
            0.004032909 = weight(_text_:a in 2463) [ClassicSimilarity], result of:
              0.004032909 = score(doc=2463,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.07643694 = fieldWeight in 2463, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2463)
            0.018723397 = weight(_text_:h in 2463) [ClassicSimilarity], result of:
              0.018723397 = score(doc=2463,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.16469726 = fieldWeight in 2463, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2463)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    Perspektive Bibliothek. 3(2014) H.2, S.91-119
    Type
    a
  16. Hyvönen, E.; Leskinen, P.; Tamper, M.; Keravuori, K.; Rantala, H.; Ikkala, E.; Tuominen, J.: BiographySampo - publishing and enriching biographies on the Semantic Web for digital humanities research (2019) 0.01
    0.007441449 = product of:
      0.014882898 = sum of:
        0.014882898 = product of:
          0.022324346 = sum of:
            0.0067215143 = weight(_text_:a in 5799) [ClassicSimilarity], result of:
              0.0067215143 = score(doc=5799,freq=8.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.12739488 = fieldWeight in 5799, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5799)
            0.015602832 = weight(_text_:h in 5799) [ClassicSimilarity], result of:
              0.015602832 = score(doc=5799,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.13724773 = fieldWeight in 5799, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5799)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    This paper argues for making a paradigm shift in publishing and using biographical dictionaries on the web, based on Linked Data. The idea is to provide the user with enhanced reading experience of biographies by enriching contents with data linking and reasoning. In addition, versatile tooling for 1) biographical research of individual persons as well as for 2) prosopographical research on groups of people are provided. To demonstrate and evaluate the new possibilities,we present the semantic portal "BiographySampo - Finnish Biographies on theSemantic Web". The system is based on a knowledge graph extracted automatically from a collection of 13.100 textual biographies, enriched with data linking to 16 external data sources, and by harvesting external collection data from libraries, museums, and archives. The portal was released in September 2018 for free public use at: http://biografiasampo.fi.
    Type
    a
  17. Neubauer, G.: Visualization of typed links in linked data (2017) 0.01
    0.0063211964 = product of:
      0.012642393 = sum of:
        0.012642393 = product of:
          0.018963588 = sum of:
            0.0033607571 = weight(_text_:a in 3912) [ClassicSimilarity], result of:
              0.0033607571 = score(doc=3912,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.06369744 = fieldWeight in 3912, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3912)
            0.015602832 = weight(_text_:h in 3912) [ClassicSimilarity], result of:
              0.015602832 = score(doc=3912,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.13724773 = fieldWeight in 3912, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3912)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare. 70(2017) H.2, S.179-199
    Type
    a
  18. Borst, T.; Löhden, A.; Neubert, J.; Pohl, A.: "Linked Open Data" im Fokus : Spannende Themen und Diskussionen bei der SWIB12 (2013) 0.00
    0.0042847665 = product of:
      0.008569533 = sum of:
        0.008569533 = product of:
          0.0128542995 = sum of:
            0.0034926014 = weight(_text_:a in 3352) [ClassicSimilarity], result of:
              0.0034926014 = score(doc=3352,freq=6.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.06619633 = fieldWeight in 3352, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3352)
            0.009361698 = weight(_text_:h in 3352) [ClassicSimilarity], result of:
              0.009361698 = score(doc=3352,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.08234863 = fieldWeight in 3352, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3352)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    BuB. 64(2013) H.2, S.96
    Type
    a
  19. Borst, T.; Neubert, J.; Seiler, A.: Bibliotheken auf dem Weg in das Semantic Web : Bericht von der SWIB2010 in Köln - unterschiedliche Entwicklungsschwerpunkte (2011) 0.00
    0.0040711323 = product of:
      0.008142265 = sum of:
        0.008142265 = product of:
          0.012213396 = sum of:
            0.0028516972 = weight(_text_:a in 4532) [ClassicSimilarity], result of:
              0.0028516972 = score(doc=4532,freq=4.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.054049075 = fieldWeight in 4532, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=4532)
            0.009361698 = weight(_text_:h in 4532) [ClassicSimilarity], result of:
              0.009361698 = score(doc=4532,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.08234863 = fieldWeight in 4532, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=4532)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    BuB. 63(2011) H.3, S.160-161
    Type
    a
  20. Borst, T.; Fingerle, B.; Neubert, J.; Seiler, A.: Auf dem Weg in das Semantic Web : Anwendungsbeispiele und Lösungsszenarien in Bibliotheken / Eine Veranstaltung von hbz und ZBW (2010) 0.00
    0.0033926102 = product of:
      0.0067852205 = sum of:
        0.0067852205 = product of:
          0.01017783 = sum of:
            0.0023764144 = weight(_text_:a in 4398) [ClassicSimilarity], result of:
              0.0023764144 = score(doc=4398,freq=4.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.045040898 = fieldWeight in 4398, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=4398)
            0.007801416 = weight(_text_:h in 4398) [ClassicSimilarity], result of:
              0.007801416 = score(doc=4398,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.06862386 = fieldWeight in 4398, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=4398)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    BuB. 62(2010) H.2, S.108-109
    Type
    a

Languages

  • e 71
  • d 21
  • f 1
  • More… Less…

Types