Search (60 results, page 1 of 3)

  • × theme_ss:"Semantic Web"
  • × type_ss:"a"
  • × year_i:[2010 TO 2020}
  1. Hooland, S. van; Verborgh, R.; Wilde, M. De; Hercher, J.; Mannens, E.; Wa, R.Van de: Evaluating the success of vocabulary reconciliation for cultural heritage collections (2013) 0.04
    0.038194444 = product of:
      0.07638889 = sum of:
        0.00972145 = weight(_text_:information in 662) [ClassicSimilarity], result of:
          0.00972145 = score(doc=662,freq=2.0), product of:
            0.083537094 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047586527 = queryNorm
            0.116372846 = fieldWeight in 662, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=662)
        0.06666744 = sum of:
          0.027983533 = weight(_text_:technology in 662) [ClassicSimilarity], result of:
            0.027983533 = score(doc=662,freq=2.0), product of:
              0.1417311 = queryWeight, product of:
                2.978387 = idf(docFreq=6114, maxDocs=44218)
                0.047586527 = queryNorm
              0.19744103 = fieldWeight in 662, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.978387 = idf(docFreq=6114, maxDocs=44218)
                0.046875 = fieldNorm(doc=662)
          0.038683902 = weight(_text_:22 in 662) [ClassicSimilarity], result of:
            0.038683902 = score(doc=662,freq=2.0), product of:
              0.16663991 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.047586527 = queryNorm
              0.23214069 = fieldWeight in 662, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=662)
      0.5 = coord(2/4)
    
    Date
    22. 3.2013 19:29:20
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.3, S.464-479
  2. Prud'hommeaux, E.; Gayo, E.: RDF ventures to boldly meet your most pedestrian needs (2015) 0.04
    0.038194444 = product of:
      0.07638889 = sum of:
        0.00972145 = weight(_text_:information in 2024) [ClassicSimilarity], result of:
          0.00972145 = score(doc=2024,freq=2.0), product of:
            0.083537094 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047586527 = queryNorm
            0.116372846 = fieldWeight in 2024, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2024)
        0.06666744 = sum of:
          0.027983533 = weight(_text_:technology in 2024) [ClassicSimilarity], result of:
            0.027983533 = score(doc=2024,freq=2.0), product of:
              0.1417311 = queryWeight, product of:
                2.978387 = idf(docFreq=6114, maxDocs=44218)
                0.047586527 = queryNorm
              0.19744103 = fieldWeight in 2024, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.978387 = idf(docFreq=6114, maxDocs=44218)
                0.046875 = fieldNorm(doc=2024)
          0.038683902 = weight(_text_:22 in 2024) [ClassicSimilarity], result of:
            0.038683902 = score(doc=2024,freq=2.0), product of:
              0.16663991 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.047586527 = queryNorm
              0.23214069 = fieldWeight in 2024, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2024)
      0.5 = coord(2/4)
    
    Source
    Bulletin of the Association for Information Science and Technology. 41(2015) no.4, S.18-22
  3. Papadakis, I. et al.: Highlighting timely information in libraries through social and semantic Web technologies (2016) 0.03
    0.027575132 = product of:
      0.055150263 = sum of:
        0.022913676 = weight(_text_:information in 2090) [ClassicSimilarity], result of:
          0.022913676 = score(doc=2090,freq=4.0), product of:
            0.083537094 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047586527 = queryNorm
            0.27429342 = fieldWeight in 2090, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=2090)
        0.032236587 = product of:
          0.064473175 = sum of:
            0.064473175 = weight(_text_:22 in 2090) [ClassicSimilarity], result of:
              0.064473175 = score(doc=2090,freq=2.0), product of:
                0.16663991 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047586527 = queryNorm
                0.38690117 = fieldWeight in 2090, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2090)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Series
    Communications in computer and information science; 672
    Source
    Metadata and semantics research: 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings. Eds.: E. Garoufallou
  4. Zhang, L.: Linking information through function (2014) 0.02
    0.020744089 = product of:
      0.041488178 = sum of:
        0.02749641 = weight(_text_:information in 1526) [ClassicSimilarity], result of:
          0.02749641 = score(doc=1526,freq=16.0), product of:
            0.083537094 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047586527 = queryNorm
            0.3291521 = fieldWeight in 1526, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1526)
        0.013991767 = product of:
          0.027983533 = sum of:
            0.027983533 = weight(_text_:technology in 1526) [ClassicSimilarity], result of:
              0.027983533 = score(doc=1526,freq=2.0), product of:
                0.1417311 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.047586527 = queryNorm
                0.19744103 = fieldWeight in 1526, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1526)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    How information resources can be meaningfully related has been addressed in contexts from bibliographic entries to hyperlinks and, more recently, linked data. The genre structure and relationships among genre structure constituents shed new light on organizing information by purpose or function. This study examines the relationships among a set of functional units previously constructed in a taxonomy, each of which is a chunk of information embedded in a document and is distinct in terms of its communicative function. Through a card-sort study, relationships among functional units were identified with regard to their occurrence and function. The findings suggest that a group of functional units can be identified, collocated, and navigated by particular relationships. Understanding how functional units are related to each other is significant in linking information pieces in documents to support finding, aggregating, and navigating information in a distributed information environment.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.11, S.2293-2305
  5. Rajabi, E.; Sanchez-Alonso, S.; Sicilia, M.-A.: Analyzing broken links on the web of data : An experiment with DBpedia (2014) 0.02
    0.016181652 = product of:
      0.032363303 = sum of:
        0.016039573 = weight(_text_:information in 1330) [ClassicSimilarity], result of:
          0.016039573 = score(doc=1330,freq=4.0), product of:
            0.083537094 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047586527 = queryNorm
            0.1920054 = fieldWeight in 1330, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1330)
        0.016323728 = product of:
          0.032647457 = sum of:
            0.032647457 = weight(_text_:technology in 1330) [ClassicSimilarity], result of:
              0.032647457 = score(doc=1330,freq=2.0), product of:
                0.1417311 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.047586527 = queryNorm
                0.23034787 = fieldWeight in 1330, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1330)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Linked open data allow interlinking and integrating any kind of data on the web. Links between various data sources play a key role insofar as they allow software applications (e.g., browsers, search engines) to operate over the aggregated data space as if it was a unique local database. In this new data space, where DBpedia, a data set including structured information from Wikipedia, seems to be the central hub, we analyzed and highlighted outgoing links from this hub in an effort to discover broken links. The paper reports on an experiment to examine the causes of broken links and proposes some treatments for solving this problem.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.8, S.1721-1727
  6. Aslam, S.; Sonkar, S.K.: Semantic Web : an overview (2019) 0.02
    0.015808811 = product of:
      0.031617623 = sum of:
        0.012961932 = weight(_text_:information in 54) [ClassicSimilarity], result of:
          0.012961932 = score(doc=54,freq=2.0), product of:
            0.083537094 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047586527 = queryNorm
            0.1551638 = fieldWeight in 54, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=54)
        0.01865569 = product of:
          0.03731138 = sum of:
            0.03731138 = weight(_text_:technology in 54) [ClassicSimilarity], result of:
              0.03731138 = score(doc=54,freq=2.0), product of:
                0.1417311 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.047586527 = queryNorm
                0.2632547 = fieldWeight in 54, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.0625 = fieldNorm(doc=54)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This paper presents the semantic web, web writing content, web technology, goals of semantic and obligation for the expansion of web 3.0. This paper also shows the different components of semantic web and such as HTTP, HTML, XML, XML Schema, URI, RDF, Taxonomy and OWL. To provide valuable information services semantic web execute the benefits of library functions and also to be the best use of library collection are mention here.
  7. Brunetti, J.M.; Roberto García, R.: User-centered design and evaluation of overview components for semantic data exploration (2014) 0.01
    0.014384847 = product of:
      0.028769694 = sum of:
        0.01587506 = weight(_text_:information in 1626) [ClassicSimilarity], result of:
          0.01587506 = score(doc=1626,freq=12.0), product of:
            0.083537094 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047586527 = queryNorm
            0.19003606 = fieldWeight in 1626, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=1626)
        0.012894635 = product of:
          0.02578927 = sum of:
            0.02578927 = weight(_text_:22 in 1626) [ClassicSimilarity], result of:
              0.02578927 = score(doc=1626,freq=2.0), product of:
                0.16663991 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047586527 = queryNorm
                0.15476047 = fieldWeight in 1626, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1626)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Purpose - The growing volumes of semantic data available in the web result in the need for handling the information overload phenomenon. The potential of this amount of data is enormous but in most cases it is very difficult for users to visualize, explore and use this data, especially for lay-users without experience with Semantic Web technologies. The paper aims to discuss these issues. Design/methodology/approach - The Visual Information-Seeking Mantra "Overview first, zoom and filter, then details-on-demand" proposed by Shneiderman describes how data should be presented in different stages to achieve an effective exploration. The overview is the first user task when dealing with a data set. The objective is that the user is capable of getting an idea about the overall structure of the data set. Different information architecture (IA) components supporting the overview tasks have been developed, so they are automatically generated from semantic data, and evaluated with end-users. Findings - The chosen IA components are well known to web users, as they are present in most web pages: navigation bars, site maps and site indexes. The authors complement them with Treemaps, a visualization technique for displaying hierarchical data. These components have been developed following an iterative User-Centered Design methodology. Evaluations with end-users have shown that they get easily used to them despite the fact that they are generated automatically from structured data, without requiring knowledge about the underlying semantic technologies, and that the different overview components complement each other as they focus on different information search needs. Originality/value - Obtaining semantic data sets overviews cannot be easily done with the current semantic web browsers. Overviews become difficult to achieve with large heterogeneous data sets, which is typical in the Semantic Web, because traditional IA techniques do not easily scale to large data sets. There is little or no support to obtain overview information quickly and easily at the beginning of the exploration of a new data set. This can be a serious limitation when exploring a data set for the first time, especially for lay-users. The proposal is to reuse and adapt existing IA components to provide this overview to users and show that they can be generated automatically from the thesaurus and ontologies that structure semantic data while providing a comparable user experience to traditional web sites.
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 66(2014) no.5, S.519-536
  8. Almeida, M.; Souza, R.; Fonseca, F.: Semantics in the Semantic Web : a critical evaluation (2011) 0.01
    0.013973147 = product of:
      0.027946293 = sum of:
        0.011456838 = weight(_text_:information in 4293) [ClassicSimilarity], result of:
          0.011456838 = score(doc=4293,freq=4.0), product of:
            0.083537094 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047586527 = queryNorm
            0.13714671 = fieldWeight in 4293, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4293)
        0.016489455 = product of:
          0.03297891 = sum of:
            0.03297891 = weight(_text_:technology in 4293) [ClassicSimilarity], result of:
              0.03297891 = score(doc=4293,freq=4.0), product of:
                0.1417311 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.047586527 = queryNorm
                0.23268649 = fieldWeight in 4293, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4293)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    In recent years, the term "semantics" has been widely used in various fields of research and particularly in areas related to information technology. One of the motivators of such an appropriation is the vision of the Semantic Web, a set of developments underway, which might allow one to obtain better results when querying on the web. However, it is worth asking what kind of semantics we can find in the Semantic Web, considering that studying the subject is a complex and controversial endeavor. Working within this context, we present an account of semantics, relying on the main linguist approaches, in order to then analyze what semantics is within the scope of information technology. We critically evaluate a spectrum, which proposes the ordination of instruments (models, languages, taxonomic structures, to mention but a few) according to a semantic scale. In addition to proposing a new extended spectrum, we suggest alternative interpretations with the aim of clarifying the use of the term "semantics" in different contexts. Finally, we offer our conclusions regarding the semantic in the Semantic Web and mention future directions and complementary works.
  9. Narock, T.; Zhou, L.; Yoon, V.: Semantic similarity of ontology instances using polarity mining (2013) 0.01
    0.013869986 = product of:
      0.027739972 = sum of:
        0.013748205 = weight(_text_:information in 620) [ClassicSimilarity], result of:
          0.013748205 = score(doc=620,freq=4.0), product of:
            0.083537094 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047586527 = queryNorm
            0.16457605 = fieldWeight in 620, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=620)
        0.013991767 = product of:
          0.027983533 = sum of:
            0.027983533 = weight(_text_:technology in 620) [ClassicSimilarity], result of:
              0.027983533 = score(doc=620,freq=2.0), product of:
                0.1417311 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.047586527 = queryNorm
                0.19744103 = fieldWeight in 620, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.046875 = fieldNorm(doc=620)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Semantic similarity is vital to many areas, such as information retrieval. Various methods have been proposed with a focus on comparing unstructured text documents. Several of these have been enhanced with ontology; however, they have not been applied to ontology instances. With the growth in ontology instance data published online through, for example, Linked Open Data, there is an increasing need to apply semantic similarity to ontology instances. Drawing on ontology-supported polarity mining (OSPM), we propose an algorithm that enhances the computation of semantic similarity with polarity mining techniques. The algorithm is evaluated with online customer review data. The experimental results show that the proposed algorithm outperforms the baseline algorithm in multiple settings.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.2, S.416-427
  10. Corcho, O.; Poveda-Villalón, M.; Gómez-Pérez, A.: Ontology engineering in the era of linked data (2015) 0.01
    0.01383271 = product of:
      0.02766542 = sum of:
        0.011341691 = weight(_text_:information in 3293) [ClassicSimilarity], result of:
          0.011341691 = score(doc=3293,freq=2.0), product of:
            0.083537094 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047586527 = queryNorm
            0.13576832 = fieldWeight in 3293, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3293)
        0.016323728 = product of:
          0.032647457 = sum of:
            0.032647457 = weight(_text_:technology in 3293) [ClassicSimilarity], result of:
              0.032647457 = score(doc=3293,freq=2.0), product of:
                0.1417311 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.047586527 = queryNorm
                0.23034787 = fieldWeight in 3293, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3293)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Source
    Bulletin of the Association for Information Science and Technology. 41(2015) no.4, S.13-17
  11. Oliveira Machado, L.M.; Souza, R.R.; Simões, M. da Graça: Semantic web or web of data? : a diachronic study (1999 to 2017) of the publications of Tim Berners-Lee and the World Wide Web Consortium (2019) 0.01
    0.012845755 = product of:
      0.02569151 = sum of:
        0.0140317045 = weight(_text_:information in 5300) [ClassicSimilarity], result of:
          0.0140317045 = score(doc=5300,freq=6.0), product of:
            0.083537094 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047586527 = queryNorm
            0.16796975 = fieldWeight in 5300, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5300)
        0.011659805 = product of:
          0.02331961 = sum of:
            0.02331961 = weight(_text_:technology in 5300) [ClassicSimilarity], result of:
              0.02331961 = score(doc=5300,freq=2.0), product of:
                0.1417311 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.047586527 = queryNorm
                0.16453418 = fieldWeight in 5300, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5300)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The web has been, in the last decades, the place where information retrieval achieved its maximum importance, given its ubiquity and the sheer volume of information. However, its exponential growth made the retrieval task increasingly hard, relying in its effectiveness on idiosyncratic and somewhat biased ranking algorithms. To deal with this problem, a "new" web, called the Semantic Web (SW), was proposed, bringing along concepts like "Web of Data" and "Linked Data," although the definitions and connections among these concepts are often unclear. Based on a qualitative approach built over a literature review, a definition of SW is presented, discussing the related concepts sometimes used as synonyms. It concludes that the SW is a comprehensive and ambitious construct that includes the great purpose of making the web a global database. It also follows the specifications developed and/or associated with its operationalization and the necessary procedures for the connection of data in an open format on the web. The goals of this comprehensive SW are the union of two outcomes still tenuously connected: the virtually unlimited possibility of connections between data-the web domain-with the potentiality of the automated inference of "intelligent" systems-the semantic component.
    Source
    Journal of the Association for Information Science and Technology. 70(2019) no.7, S.701-714
  12. Baker, T.; Sutton, S.A.: Linked data and the charm of weak semantics : Introduction: the strengths of weak semantics (2015) 0.01
    0.011558321 = product of:
      0.023116643 = sum of:
        0.011456838 = weight(_text_:information in 2022) [ClassicSimilarity], result of:
          0.011456838 = score(doc=2022,freq=4.0), product of:
            0.083537094 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047586527 = queryNorm
            0.13714671 = fieldWeight in 2022, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2022)
        0.011659805 = product of:
          0.02331961 = sum of:
            0.02331961 = weight(_text_:technology in 2022) [ClassicSimilarity], result of:
              0.02331961 = score(doc=2022,freq=2.0), product of:
                0.1417311 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.047586527 = queryNorm
                0.16453418 = fieldWeight in 2022, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2022)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Logic and precision are fundamental to ontologies underlying the semantic web and, by extension, to linked data. This special section focuses on the interaction of semantics, ontologies and linked data. The discussion presents the Simple Knowledge Organization Scheme (SKOS) as a less formal strategy for expressing concept hierarchies and associations and questions the value of deep domain ontologies in favor of simpler vocabularies that are more open to reuse, albeit risking illogical outcomes. RDF ontologies harbor another unexpected drawback. While structurally sound, they leave validation gaps permitting illogical uses, a problem being addressed by a W3C Working Group. Data models based on RDF graphs and properties may replace traditional library catalog models geared to predefined entities, with relationships between RDF classes providing the semantic connections. The BIBFRAME Initiative takes a different and streamlined approach to linking data, building rich networks of information resources rather than relying on a strict underlying structure and vocabulary. Taken together, the articles illustrate the trend toward a pragmatic approach to a Semantic Web, sacrificing some specificity for greater flexibility and partial interoperability.
    Source
    Bulletin of the Association for Information Science and Technology. 41(2015) no.4, S.10-12
  13. Zhitomirsky-Geffet, M.; Bar-Ilan, J.: Towards maximal unification of semantically diverse ontologies for controversial domains (2014) 0.01
    0.011030053 = product of:
      0.022060106 = sum of:
        0.0091654705 = weight(_text_:information in 1634) [ClassicSimilarity], result of:
          0.0091654705 = score(doc=1634,freq=4.0), product of:
            0.083537094 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047586527 = queryNorm
            0.10971737 = fieldWeight in 1634, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=1634)
        0.012894635 = product of:
          0.02578927 = sum of:
            0.02578927 = weight(_text_:22 in 1634) [ClassicSimilarity], result of:
              0.02578927 = score(doc=1634,freq=2.0), product of:
                0.16663991 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047586527 = queryNorm
                0.15476047 = fieldWeight in 1634, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1634)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Purpose - Ontologies are prone to wide semantic variability due to subjective points of view of their composers. The purpose of this paper is to propose a new approach for maximal unification of diverse ontologies for controversial domains by their relations. Design/methodology/approach - Effective matching or unification of multiple ontologies for a specific domain is crucial for the success of many semantic web applications, such as semantic information retrieval and organization, document tagging, summarization and search. To this end, numerous automatic and semi-automatic techniques were proposed in the past decade that attempt to identify similar entities, mostly classes, in diverse ontologies for similar domains. Apparently, matching individual entities cannot result in full integration of ontologies' semantics without matching their inter-relations with all other-related classes (and instances). However, semantic matching of ontological relations still constitutes a major research challenge. Therefore, in this paper the authors propose a new paradigm for assessment of maximal possible matching and unification of ontological relations. To this end, several unification rules for ontological relations were devised based on ontological reference rules, and lexical and textual entailment. These rules were semi-automatically implemented to extend a given ontology with semantically matching relations from another ontology for a similar domain. Then, the ontologies were unified through these similar pairs of relations. The authors observe that these rules can be also facilitated to reveal the contradictory relations in different ontologies. Findings - To assess the feasibility of the approach two experiments were conducted with different sets of multiple personal ontologies on controversial domains constructed by trained subjects. The results for about 50 distinct ontology pairs demonstrate a good potential of the methodology for increasing inter-ontology agreement. Furthermore, the authors show that the presented methodology can lead to a complete unification of multiple semantically heterogeneous ontologies. Research limitations/implications - This is a conceptual study that presents a new approach for semantic unification of ontologies by a devised set of rules along with the initial experimental evidence of its feasibility and effectiveness. However, this methodology has to be fully automatically implemented and tested on a larger dataset in future research. Practical implications - This result has implication for semantic search, since a richer ontology, comprised of multiple aspects and viewpoints of the domain of knowledge, enhances discoverability and improves search results. Originality/value - To the best of the knowledge, this is the first study to examine and assess the maximal level of semantic relation-based ontology unification.
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 66(2014) no.5, S.494-518
  14. Iorio, A. di; Peroni, S.; Vitali, F.: ¬A Semantic Web approach to everyday overlapping markup (2011) 0.01
    0.0098805055 = product of:
      0.019761011 = sum of:
        0.008101207 = weight(_text_:information in 4749) [ClassicSimilarity], result of:
          0.008101207 = score(doc=4749,freq=2.0), product of:
            0.083537094 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047586527 = queryNorm
            0.09697737 = fieldWeight in 4749, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4749)
        0.011659805 = product of:
          0.02331961 = sum of:
            0.02331961 = weight(_text_:technology in 4749) [ClassicSimilarity], result of:
              0.02331961 = score(doc=4749,freq=2.0), product of:
                0.1417311 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.047586527 = queryNorm
                0.16453418 = fieldWeight in 4749, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4749)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.9, S.1696-1716
  15. Guns, R.: Tracing the origins of the semantic web (2013) 0.01
    0.0098805055 = product of:
      0.019761011 = sum of:
        0.008101207 = weight(_text_:information in 1093) [ClassicSimilarity], result of:
          0.008101207 = score(doc=1093,freq=2.0), product of:
            0.083537094 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047586527 = queryNorm
            0.09697737 = fieldWeight in 1093, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1093)
        0.011659805 = product of:
          0.02331961 = sum of:
            0.02331961 = weight(_text_:technology in 1093) [ClassicSimilarity], result of:
              0.02331961 = score(doc=1093,freq=2.0), product of:
                0.1417311 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.047586527 = queryNorm
                0.16453418 = fieldWeight in 1093, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1093)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.10, S.2173-2181
  16. Isaac, A.; Baker, T.: Linked data practice at different levels of semantic precision : the perspective of libraries, archives and museums (2015) 0.01
    0.0098805055 = product of:
      0.019761011 = sum of:
        0.008101207 = weight(_text_:information in 2026) [ClassicSimilarity], result of:
          0.008101207 = score(doc=2026,freq=2.0), product of:
            0.083537094 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047586527 = queryNorm
            0.09697737 = fieldWeight in 2026, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2026)
        0.011659805 = product of:
          0.02331961 = sum of:
            0.02331961 = weight(_text_:technology in 2026) [ClassicSimilarity], result of:
              0.02331961 = score(doc=2026,freq=2.0), product of:
                0.1417311 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.047586527 = queryNorm
                0.16453418 = fieldWeight in 2026, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2026)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Source
    Bulletin of the Association for Information Science and Technology. 41(2015) no.4, S.34-39
  17. Kaminski, R.; Schaub, T.; Wanko, P.: ¬A tutorial on hybrid answer set solving with clingo (2017) 0.01
    0.0098805055 = product of:
      0.019761011 = sum of:
        0.008101207 = weight(_text_:information in 3937) [ClassicSimilarity], result of:
          0.008101207 = score(doc=3937,freq=2.0), product of:
            0.083537094 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047586527 = queryNorm
            0.09697737 = fieldWeight in 3937, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3937)
        0.011659805 = product of:
          0.02331961 = sum of:
            0.02331961 = weight(_text_:technology in 3937) [ClassicSimilarity], result of:
              0.02331961 = score(doc=3937,freq=2.0), product of:
                0.1417311 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.047586527 = queryNorm
                0.16453418 = fieldWeight in 3937, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3937)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Answer Set Programming (ASP) has become an established paradigm for Knowledge Representation and Reasoning, in particular, when it comes to solving knowledge-intense combinatorial (optimization) problems. ASP's unique pairing of a simple yet rich modeling language with highly performant solving technology has led to an increasing interest in ASP in academia as well as industry. To further boost this development and make ASP fit for real world applications it is indispensable to equip it with means for an easy integration into software environments and for adding complementary forms of reasoning. In this tutorial, we describe how both issues are addressed in the ASP system clingo. At first, we outline features of clingo's application programming interface (API) that are essential for multi-shot ASP solving, a technique for dealing with continuously changing logic programs. This is illustrated by realizing two exemplary reasoning modes, namely branch-and-bound-based optimization and incremental ASP solving. We then switch to the design of the API for integrating complementary forms of reasoning and detail this in an extensive case study dealing with the integration of difference constraints. We show how the syntax of these constraints is added to the modeling language and seamlessly merged into the grounding process. We then develop in detail a corresponding theory propagator for difference constraints and present how it is integrated into clingo's solving process.
    Series
    Lecture Notes in Computer Scienc;10370) (Information Systems and Applications, incl. Internet/Web, and HCI
  18. Wenige, L.: ¬The application of linked data resources for library recommender systems (2017) 0.00
    0.0049110963 = product of:
      0.019644385 = sum of:
        0.019644385 = weight(_text_:information in 3500) [ClassicSimilarity], result of:
          0.019644385 = score(doc=3500,freq=6.0), product of:
            0.083537094 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047586527 = queryNorm
            0.23515764 = fieldWeight in 3500, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3500)
      0.25 = coord(1/4)
    
    Source
    Theorie, Semantik und Organisation von Wissen: Proceedings der 13. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und dem 13. Internationalen Symposium der Informationswissenschaft der Higher Education Association for Information Science (HI) Potsdam (19.-20.03.2013): 'Theory, Information and Organization of Knowledge' / Proceedings der 14. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und Natural Language & Information Systems (NLDB) Passau (16.06.2015): 'Lexical Resources for Knowledge Organization' / Proceedings des Workshops der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) auf der SEMANTICS Leipzig (1.09.2014): 'Knowledge Organization and Semantic Web' / Proceedings des Workshops der Polnischen und Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) Cottbus (29.-30.09.2011): 'Economics of Knowledge Production and Organization'. Hrsg. von W. Babik, H.P. Ohly u. K. Weber
  19. Kushwaha, N.; Vyas, O.P.: SemMovieRec : extraction of semantic features of DBpedia for recommender system (2017) 0.00
    0.0049110963 = product of:
      0.019644385 = sum of:
        0.019644385 = weight(_text_:information in 3501) [ClassicSimilarity], result of:
          0.019644385 = score(doc=3501,freq=6.0), product of:
            0.083537094 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047586527 = queryNorm
            0.23515764 = fieldWeight in 3501, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3501)
      0.25 = coord(1/4)
    
    Source
    Theorie, Semantik und Organisation von Wissen: Proceedings der 13. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und dem 13. Internationalen Symposium der Informationswissenschaft der Higher Education Association for Information Science (HI) Potsdam (19.-20.03.2013): 'Theory, Information and Organization of Knowledge' / Proceedings der 14. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und Natural Language & Information Systems (NLDB) Passau (16.06.2015): 'Lexical Resources for Knowledge Organization' / Proceedings des Workshops der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) auf der SEMANTICS Leipzig (1.09.2014): 'Knowledge Organization and Semantic Web' / Proceedings des Workshops der Polnischen und Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) Cottbus (29.-30.09.2011): 'Economics of Knowledge Production and Organization'. Hrsg. von W. Babik, H.P. Ohly u. K. Weber
  20. Marcondes, C.H.: Representing and organizing scientific knowledge in biomedical articles with Semantic Web technologies (2017) 0.00
    0.0049110963 = product of:
      0.019644385 = sum of:
        0.019644385 = weight(_text_:information in 3503) [ClassicSimilarity], result of:
          0.019644385 = score(doc=3503,freq=6.0), product of:
            0.083537094 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047586527 = queryNorm
            0.23515764 = fieldWeight in 3503, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3503)
      0.25 = coord(1/4)
    
    Source
    Theorie, Semantik und Organisation von Wissen: Proceedings der 13. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und dem 13. Internationalen Symposium der Informationswissenschaft der Higher Education Association for Information Science (HI) Potsdam (19.-20.03.2013): 'Theory, Information and Organization of Knowledge' / Proceedings der 14. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und Natural Language & Information Systems (NLDB) Passau (16.06.2015): 'Lexical Resources for Knowledge Organization' / Proceedings des Workshops der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) auf der SEMANTICS Leipzig (1.09.2014): 'Knowledge Organization and Semantic Web' / Proceedings des Workshops der Polnischen und Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) Cottbus (29.-30.09.2011): 'Economics of Knowledge Production and Organization'. Hrsg. von W. Babik, H.P. Ohly u. K. Weber

Authors

Languages

  • e 52
  • d 7
  • f 1
  • More… Less…

Types