Search (58 results, page 1 of 3)

  • × theme_ss:"Semantic Web"
  • × type_ss:"a"
  1. Wang, H.; Liu, Q.; Penin, T.; Fu, L.; Zhang, L.; Tran, T.; Yu, Y.; Pan, Y.: Semplore: a scalable IR approach to search the Web of Data (2009) 0.08
    0.08235665 = product of:
      0.12353496 = sum of:
        0.08051914 = weight(_text_:search in 1638) [ClassicSimilarity], result of:
          0.08051914 = score(doc=1638,freq=8.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.460814 = fieldWeight in 1638, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=1638)
        0.043015826 = product of:
          0.08603165 = sum of:
            0.08603165 = weight(_text_:engines in 1638) [ClassicSimilarity], result of:
              0.08603165 = score(doc=1638,freq=2.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.33681408 = fieldWeight in 1638, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1638)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The Web of Data keeps growing rapidly. However, the full exploitation of this large amount of structured data faces numerous challenges like usability, scalability, imprecise information needs and data change. We present Semplore, an IR-based system that aims at addressing these issues. Semplore supports intuitive faceted search and complex queries both on text and structured data. It combines imprecise keyword search and precise structured query in a unified ranking scheme. Scalable query processing is supported by leveraging inverted indexes traditionally used in IR systems. This is combined with a novel block-based index structure to support efficient index update when data changes. The experimental results show that Semplore is an efficient and effective system for searching the Web of Data and can be used as a basic infrastructure for Web-scale Semantic Web search engines.
  2. Mangold, C.: ¬A survey and classification of semantic search approaches (2007) 0.08
    0.07774002 = product of:
      0.11661003 = sum of:
        0.0664249 = weight(_text_:search in 259) [ClassicSimilarity], result of:
          0.0664249 = score(doc=259,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.38015217 = fieldWeight in 259, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0546875 = fieldNorm(doc=259)
        0.05018513 = product of:
          0.10037026 = sum of:
            0.10037026 = weight(_text_:engines in 259) [ClassicSimilarity], result of:
              0.10037026 = score(doc=259,freq=2.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.39294976 = fieldWeight in 259, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=259)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    A broad range of approaches to semantic document retrieval has been developed in the context of the Semantic Web. This survey builds bridges among them. We introduce a classification scheme for semantic search engines and clarify terminology. We present an overview of ten selected approaches and compare them by means of our classification criteria. Based on this comparison, we identify not only common concepts and outstanding features, but also open issues. Finally, we give directions for future application development and research.
  3. Allocca, C.; Aquin, M.d'; Motta, E.: Impact of using relationships between ontologies to enhance the ontology search results (2012) 0.07
    0.073910534 = product of:
      0.1108658 = sum of:
        0.07501928 = weight(_text_:search in 264) [ClassicSimilarity], result of:
          0.07501928 = score(doc=264,freq=10.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.4293381 = fieldWeight in 264, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=264)
        0.03584652 = product of:
          0.07169304 = sum of:
            0.07169304 = weight(_text_:engines in 264) [ClassicSimilarity], result of:
              0.07169304 = score(doc=264,freq=2.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.2806784 = fieldWeight in 264, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=264)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Using semantic web search engines, such as Watson, Swoogle or Sindice, to find ontologies is a complex exploratory activity. It generally requires formulating multiple queries, browsing pages of results, and assessing the returned ontologies against each other to obtain a relevant and adequate subset of ontologies for the intended use. Our hypothesis is that at least some of the difficulties related to searching ontologies stem from the lack of structure in the search results, where ontologies that are implicitly related to each other are presented as disconnected and shown on different result pages. In earlier publications we presented a software framework, Kannel, which is able to automatically detect and make explicit relationships between ontologies in large ontology repositories. In this paper, we present a study that compares the use of the Watson ontology search engine with an extension,Watson+Kannel, which provides information regarding the various relationships occurring between the result ontologies. We evaluate Watson+Kannel by demonstrating through various indicators that explicit relationships between ontologies improve users' efficiency in ontology search, thus validating our hypothesis.
  4. Djioua, B.; Desclés, J.-P.; Alrahabi, M.: Searching and mining with semantic categories (2012) 0.07
    0.07302292 = product of:
      0.10953437 = sum of:
        0.04744636 = weight(_text_:search in 99) [ClassicSimilarity], result of:
          0.04744636 = score(doc=99,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.27153727 = fieldWeight in 99, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=99)
        0.062088005 = product of:
          0.12417601 = sum of:
            0.12417601 = weight(_text_:engines in 99) [ClassicSimilarity], result of:
              0.12417601 = score(doc=99,freq=6.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.4861493 = fieldWeight in 99, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=99)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    A new model is proposed to retrieve information by building automatically a semantic metatext structure for texts that allow searching and extracting discourse and semantic information according to certain linguistic categorizations. This paper presents approaches for searching and mining full text with semantic categories. The model is built up from two engines: The first one, called EXCOM (Djioua et al., 2006; Alrahabi, 2010), is an automatic system for text annotation, related to discourse and semantic maps, which are specification of general linguistic ontologies founded on the Applicative and Cognitive Grammar. The annotation layer uses a linguistic method called Contextual Exploration, which handles the polysemic values of a term in texts. Several 'semantic maps' underlying 'point of views' for text mining guide this automatic annotation process. The second engine uses semantic annotated texts, produced previously in order to create a semantic inverted index, which is able to retrieve relevant documents for queries associated with discourse and semantic categories such as definition, quotation, causality, relations between concepts, etc. (Djioua & Desclés, 2007). This semantic indexation process builds a metatext layer for textual contents. Some data and linguistic rules sets as well as the general architecture that extend third-party software are expressed as supplementary information.
    Footnote
    Vgl.: http://www.igi-global.com/book/next-generation-search-engines/64423.
    Source
    Next generation search engines: advanced models for information retrieval. Eds.: C. Jouis, u.a
  5. Krause, J.: Shell Model, Semantic Web and Web Information Retrieval (2006) 0.07
    0.07253622 = product of:
      0.10880433 = sum of:
        0.058109686 = weight(_text_:search in 6061) [ClassicSimilarity], result of:
          0.058109686 = score(doc=6061,freq=6.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.33256388 = fieldWeight in 6061, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6061)
        0.05069464 = product of:
          0.10138928 = sum of:
            0.10138928 = weight(_text_:engines in 6061) [ClassicSimilarity], result of:
              0.10138928 = score(doc=6061,freq=4.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.39693922 = fieldWeight in 6061, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6061)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The middle of the 1990s are coined by the increased enthusiasm for the possibilities of the WWW, which has only recently deviated - at least in relation to scientific information - for the differentiated measuring of its advantages and disadvantages. Web Information Retrieval originated as a specialized discipline with great commercial significance (for an overview see Lewandowski 2005). Besides the new technological structure that enables the indexing and searching (in seconds) of unimaginable amounts of data worldwide, new assessment processes for the ranking of search results are being developed, which use the link structures of the Web. They are the main innovation with respect to the traditional "mother discipline" of Information Retrieval. From the beginning, link structures of Web pages are applied to commercial search engines in a wide array of variations. From the perspective of scientific information, link topology based approaches were in essence trying to solve a self-created problem: on the one hand, it quickly became clear that the openness of the Web led to an up-tonow unknown increase in available information, but this also caused the quality of the Web pages searched to become a problem - and with it the relevance of the results. The gatekeeper function of traditional information providers, which narrows down every user query to focus on high-quality sources was lacking. Therefore, the recognition of the "authoritativeness" of the Web pages by general search engines such as Google was one of the most important factors for their success.
  6. Lassalle, E.; Lassalle, E.: Semantic models in information retrieval (2012) 0.07
    0.06542733 = product of:
      0.098141 = sum of:
        0.04744636 = weight(_text_:search in 97) [ClassicSimilarity], result of:
          0.04744636 = score(doc=97,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.27153727 = fieldWeight in 97, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=97)
        0.05069464 = product of:
          0.10138928 = sum of:
            0.10138928 = weight(_text_:engines in 97) [ClassicSimilarity], result of:
              0.10138928 = score(doc=97,freq=4.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.39693922 = fieldWeight in 97, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=97)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Footnote
    Vgl.: http://www.igi-global.com/book/next-generation-search-engines/64424.
    Source
    Next generation search engines: advanced models for information retrieval. Eds.: C. Jouis, u.a
  7. Ghorbel, H.; Bahri, A.; Bouaziz, R.: Fuzzy ontologies building platform for Semantic Web : FOB platform (2012) 0.07
    0.06542733 = product of:
      0.098141 = sum of:
        0.04744636 = weight(_text_:search in 98) [ClassicSimilarity], result of:
          0.04744636 = score(doc=98,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.27153727 = fieldWeight in 98, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=98)
        0.05069464 = product of:
          0.10138928 = sum of:
            0.10138928 = weight(_text_:engines in 98) [ClassicSimilarity], result of:
              0.10138928 = score(doc=98,freq=4.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.39693922 = fieldWeight in 98, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=98)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Footnote
    Vgl.: http://www.igi-global.com/book/next-generation-search-engines/64422.
    Source
    Next generation search engines: advanced models for information retrieval. Eds.: C. Jouis, u.a
  8. Zhang, L.; Liu, Q.L.; Zhang, J.; Wang, H.F.; Pan, Y.; Yu, Y.: Semplore: an IR approach to scalable hybrid query of Semantic Web data (2007) 0.07
    0.06542733 = product of:
      0.098141 = sum of:
        0.04744636 = weight(_text_:search in 231) [ClassicSimilarity], result of:
          0.04744636 = score(doc=231,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.27153727 = fieldWeight in 231, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=231)
        0.05069464 = product of:
          0.10138928 = sum of:
            0.10138928 = weight(_text_:engines in 231) [ClassicSimilarity], result of:
              0.10138928 = score(doc=231,freq=4.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.39693922 = fieldWeight in 231, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=231)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    As an extension to the current Web, Semantic Web will not only contain structured data with machine understandable semantics but also textual information. While structured queries can be used to find information more precisely on the Semantic Web, keyword searches are still needed to help exploit textual information. It thus becomes very important that we can combine precise structured queries with imprecise keyword searches to have a hybrid query capability. In addition, due to the huge volume of information on the Semantic Web, the hybrid query must be processed in a very scalable way. In this paper, we define such a hybrid query capability that combines unary tree-shaped structured queries with keyword searches. We show how existing information retrieval (IR) index structures and functions can be reused to index semantic web data and its textual information, and how the hybrid query is evaluated on the index structure using IR engines in an efficient and scalable manner. We implemented this IR approach in an engine called Semplore. Comprehensive experiments on its performance show that it is a promising approach. It leads us to believe that it may be possible to evolve current web search engines to query and search the Semantic Web. Finally, we briefy describe how Semplore is used for searching Wikipedia and an IBM customer's product information.
  9. Rajabi, E.; Sanchez-Alonso, S.; Sicilia, M.-A.: Analyzing broken links on the web of data : An experiment with DBpedia (2014) 0.06
    0.06476976 = product of:
      0.09715463 = sum of:
        0.0469695 = weight(_text_:search in 1330) [ClassicSimilarity], result of:
          0.0469695 = score(doc=1330,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.2688082 = fieldWeight in 1330, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1330)
        0.05018513 = product of:
          0.10037026 = sum of:
            0.10037026 = weight(_text_:engines in 1330) [ClassicSimilarity], result of:
              0.10037026 = score(doc=1330,freq=2.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.39294976 = fieldWeight in 1330, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1330)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Linked open data allow interlinking and integrating any kind of data on the web. Links between various data sources play a key role insofar as they allow software applications (e.g., browsers, search engines) to operate over the aggregated data space as if it was a unique local database. In this new data space, where DBpedia, a data set including structured information from Wikipedia, seems to be the central hub, we analyzed and highlighted outgoing links from this hub in an effort to discover broken links. The paper reports on an experiment to examine the causes of broken links and proposes some treatments for solving this problem.
  10. Sah, M.; Wade, V.: Personalized concept-based search on the Linked Open Data (2015) 0.06
    0.06294721 = product of:
      0.09442082 = sum of:
        0.0657436 = weight(_text_:search in 2511) [ClassicSimilarity], result of:
          0.0657436 = score(doc=2511,freq=12.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.37625307 = fieldWeight in 2511, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=2511)
        0.028677218 = product of:
          0.057354435 = sum of:
            0.057354435 = weight(_text_:engines in 2511) [ClassicSimilarity], result of:
              0.057354435 = score(doc=2511,freq=2.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.22454272 = fieldWeight in 2511, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2511)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In this paper, we present a novel personalized concept-based search mechanism for the Web of Data based on results categorization. The innovation of the paper comes from combining novel categorization and personalization techniques, and using categorization for providing personalization. In our approach, search results (Linked Open Data resources) are dynamically categorized into Upper Mapping and Binding Exchange Layer (UMBEL) concepts using a novel fuzzy retrieval model. Then, results with the same concepts are grouped together to form categories, which we call conceptlenses. Such categorization enables concept-based browsing of the retrieved results aligned to users' intent or interests. When the user selects a concept lens for exploration, results are immediately personalized. In particular, all concept lenses are personally re-organized according to their similarity to the selected lens. Within the selected concept lens; more relevant results are included using results re-ranking and query expansion, as well as relevant concept lenses are suggested to support results exploration. This allows dynamic adaptation of results to the user's local choices. We also support interactive personalization; when the user clicks on a result, within the interacted lens, relevant lenses and results are included using results re-ranking and query expansion. Extensive evaluations were performed to assess our approach: (i) Performance of our fuzzy-based categorization approach was evaluated on a particular benchmark (~10,000 mappings). The evaluations showed that we can achieve highly acceptable categorization accuracy and perform better than the vector space model. (ii) Personalized search efficacy was assessed using a user study with 32 participants in a tourist domain. The results revealed that our approach performed significantly better than a non-adaptive baseline search. (iii) Dynamic personalization performance was evaluated, which illustrated that our personalization approach is scalable. (iv) Finally, we compared our system with the existing LOD search engines, which showed that our approach is unique.
  11. Prasad, A.R.D.; Madalli, D.P.: Faceted infrastructure for semantic digital libraries (2008) 0.06
    0.05552859 = product of:
      0.08329288 = sum of:
        0.04744636 = weight(_text_:search in 1905) [ClassicSimilarity], result of:
          0.04744636 = score(doc=1905,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.27153727 = fieldWeight in 1905, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1905)
        0.03584652 = product of:
          0.07169304 = sum of:
            0.07169304 = weight(_text_:engines in 1905) [ClassicSimilarity], result of:
              0.07169304 = score(doc=1905,freq=2.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.2806784 = fieldWeight in 1905, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1905)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose - The paper aims to argue that digital library retrieval should be based on semantic representations and propose a semantic infrastructure for digital libraries. Design/methodology/approach - The approach taken is formal model based on subject representation for digital libraries. Findings - Search engines and search techniques have fallen short of user expectations as they do not give context based retrieval. Deploying semantic web technologies would lead to efficient and more precise representation of digital library content and hence better retrieval. Though digital libraries often have metadata of information resources which can be accessed through OAI-PMH, much remains to be accomplished in making digital libraries semantic web compliant. This paper presents a semantic infrastructure for digital libraries, that will go a long way in providing them and web based information services with products highly customised to users needs. Research limitations/implications - Here only a model for semantic infrastructure is proposed. This model is proposed after studying current user-centric, top-down models adopted in digital library service architectures. Originality/value - This paper gives a generic model for building semantic infrastructure for digital libraries. Faceted ontologies for digital libraries is just one approach. But the same may be adopted by groups working with different approaches in building ontologies to realise efficient retrieval in digital libraries.
  12. Zhitomirsky-Geffet, M.; Bar-Ilan, J.: Towards maximal unification of semantically diverse ontologies for controversial domains (2014) 0.04
    0.044868 = product of:
      0.067301996 = sum of:
        0.053679425 = weight(_text_:search in 1634) [ClassicSimilarity], result of:
          0.053679425 = score(doc=1634,freq=8.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.30720934 = fieldWeight in 1634, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=1634)
        0.013622572 = product of:
          0.027245143 = sum of:
            0.027245143 = weight(_text_:22 in 1634) [ClassicSimilarity], result of:
              0.027245143 = score(doc=1634,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.15476047 = fieldWeight in 1634, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1634)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose - Ontologies are prone to wide semantic variability due to subjective points of view of their composers. The purpose of this paper is to propose a new approach for maximal unification of diverse ontologies for controversial domains by their relations. Design/methodology/approach - Effective matching or unification of multiple ontologies for a specific domain is crucial for the success of many semantic web applications, such as semantic information retrieval and organization, document tagging, summarization and search. To this end, numerous automatic and semi-automatic techniques were proposed in the past decade that attempt to identify similar entities, mostly classes, in diverse ontologies for similar domains. Apparently, matching individual entities cannot result in full integration of ontologies' semantics without matching their inter-relations with all other-related classes (and instances). However, semantic matching of ontological relations still constitutes a major research challenge. Therefore, in this paper the authors propose a new paradigm for assessment of maximal possible matching and unification of ontological relations. To this end, several unification rules for ontological relations were devised based on ontological reference rules, and lexical and textual entailment. These rules were semi-automatically implemented to extend a given ontology with semantically matching relations from another ontology for a similar domain. Then, the ontologies were unified through these similar pairs of relations. The authors observe that these rules can be also facilitated to reveal the contradictory relations in different ontologies. Findings - To assess the feasibility of the approach two experiments were conducted with different sets of multiple personal ontologies on controversial domains constructed by trained subjects. The results for about 50 distinct ontology pairs demonstrate a good potential of the methodology for increasing inter-ontology agreement. Furthermore, the authors show that the presented methodology can lead to a complete unification of multiple semantically heterogeneous ontologies. Research limitations/implications - This is a conceptual study that presents a new approach for semantic unification of ontologies by a devised set of rules along with the initial experimental evidence of its feasibility and effectiveness. However, this methodology has to be fully automatically implemented and tested on a larger dataset in future research. Practical implications - This result has implication for semantic search, since a richer ontology, comprised of multiple aspects and viewpoints of the domain of knowledge, enhances discoverability and improves search results. Originality/value - To the best of the knowledge, this is the first study to examine and assess the maximal level of semantic relation-based ontology unification.
    Date
    20. 1.2015 18:30:22
    Series
    Special issue: Semantic search
  13. Davies, J.; Weeks, R.; Krohn, U.: QuizRDF: search technology for the Semantic Web (2004) 0.04
    0.044422872 = product of:
      0.066634305 = sum of:
        0.037957087 = weight(_text_:search in 4406) [ClassicSimilarity], result of:
          0.037957087 = score(doc=4406,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.21722981 = fieldWeight in 4406, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=4406)
        0.028677218 = product of:
          0.057354435 = sum of:
            0.057354435 = weight(_text_:engines in 4406) [ClassicSimilarity], result of:
              0.057354435 = score(doc=4406,freq=2.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.22454272 = fieldWeight in 4406, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4406)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Important information is often scattered across Web and/or intranet resources. Traditional search engines return ranked retrieval lists that offer little or no information on the semantic relationships among documents. Knowledge workers spend a substantial amount of their time browsing and reading to find out how documents are related to one another and where each falls into the overall structure of the problem domain. Yet only when knowledge workers begin to locate the similarities and differences among pieces of information do they move into an essential part of their work: building relationships to create new knowledge. Information retrieval traditionally focuses on the relationship between a given query (or user profile) and the information store. On the other hand, exploitation of interrelationships between selected pieces of information (which can be facilitated by the use of ontologies) can put otherwise isolated information into a meaningful context. The implicit structures so revealed help users use and manage information more efficiently. Knowledge management tools are needed that integrate the resources dispersed across Web resources into a coherent corpus of interrelated information. Previous research in information integration has largely focused on integrating heterogeneous databases and knowledge bases, which represent information in a highly structured way, often by means of formal languages. In contrast, the Web consists to a large extent of unstructured or semi-structured natural language texts. As we have seen, ontologies offer an alternative way to cope with heterogeneous representations of Web resources. The domain model implicit in an ontology can be taken as a unifying structure for giving information a common representation and semantics. Once such a unifying structure exists, it can be exploited to improve browsing and retrieval performance in information access tools. QuizRDF is an example of such a tool.
  14. Singh, A.; Sinha, U.; Sharma, D.k.: Semantic Web and data visualization (2020) 0.04
    0.044422872 = product of:
      0.066634305 = sum of:
        0.037957087 = weight(_text_:search in 79) [ClassicSimilarity], result of:
          0.037957087 = score(doc=79,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.21722981 = fieldWeight in 79, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=79)
        0.028677218 = product of:
          0.057354435 = sum of:
            0.057354435 = weight(_text_:engines in 79) [ClassicSimilarity], result of:
              0.057354435 = score(doc=79,freq=2.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.22454272 = fieldWeight in 79, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.03125 = fieldNorm(doc=79)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    With the terrific growth of data volume and data being produced every second on millions of devices across the globe, there is a desperate need to manage the unstructured data available on web pages efficiently. Semantic Web or also known as Web of Trust structures the scattered data on the Internet according to the needs of the user. It is an extension of the World Wide Web (WWW) which focuses on manipulating web data on behalf of Humans. Due to the ability of the Semantic Web to integrate data from disparate sources and hence makes it more user-friendly, it is an emerging trend. Tim Berners-Lee first introduced the term Semantic Web and since then it has come a long way to become a more intelligent and intuitive web. Data Visualization plays an essential role in explaining complex concepts in a universal manner through pictorial representation, and the Semantic Web helps in broadening the potential of Data Visualization and thus making it an appropriate combination. The objective of this chapter is to provide fundamental insights concerning the semantic web technologies and in addition to that it also elucidates the issues as well as the solutions regarding the semantic web. The purpose of this chapter is to highlight the semantic web architecture in detail while also comparing it with the traditional search system. It classifies the semantic web architecture into three major pillars i.e. RDF, Ontology, and XML. Moreover, it describes different semantic web tools used in the framework and technology. It attempts to illustrate different approaches of the semantic web search engines. Besides stating numerous challenges faced by the semantic web it also illustrates the solutions.
  15. Franklin, R.A.: Re-inventing subject access for the semantic web (2003) 0.04
    0.040462285 = product of:
      0.060693428 = sum of:
        0.04025957 = weight(_text_:search in 2556) [ClassicSimilarity], result of:
          0.04025957 = score(doc=2556,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.230407 = fieldWeight in 2556, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=2556)
        0.020433856 = product of:
          0.040867712 = sum of:
            0.040867712 = weight(_text_:22 in 2556) [ClassicSimilarity], result of:
              0.040867712 = score(doc=2556,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.23214069 = fieldWeight in 2556, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2556)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    First generation scholarly research on the Web lacked a firm system of authority control. Second generation Web research is beginning to model subject access with library science principles of bibliographic control and cataloguing. Harnessing the Web and organising the intellectual content with standards and controlled vocabulary provides precise search and retrieval capability, increasing relevance and efficient use of technology. Dublin Core metadata standards permit a full evaluation and cataloguing of Web resources appropriate to highly specific research needs and discovery. Current research points to a type of structure based on a system of faceted classification. This system allows the semantic and syntactic relationships to be defined. Controlled vocabulary, such as the Library of Congress Subject Headings, can be assigned, not in a hierarchical structure, but rather as descriptive facets of relating concepts. Web design features such as this are adding value to discovery and filtering out data that lack authority. The system design allows for scalability and extensibility, two technical features that are integral to future development of the digital library and resource discovery.
    Date
    30.12.2008 18:22:46
  16. Legg, C.: Ontologies on the Semantic Web (2007) 0.04
    0.037011288 = product of:
      0.05551693 = sum of:
        0.026839713 = weight(_text_:search in 1979) [ClassicSimilarity], result of:
          0.026839713 = score(doc=1979,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.15360467 = fieldWeight in 1979, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=1979)
        0.028677218 = product of:
          0.057354435 = sum of:
            0.057354435 = weight(_text_:engines in 1979) [ClassicSimilarity], result of:
              0.057354435 = score(doc=1979,freq=2.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.22454272 = fieldWeight in 1979, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1979)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    As an informational technology, the World Wide Web has enjoyed spectacular success. In just ten years it has transformed the way information is produced, stored, and shared in arenas as diverse as shopping, family photo albums, and high-level academic research. The "Semantic Web" is touted by its developers as equally revolutionary, although it has not yet achieved anything like the Web's exponential uptake. It seeks to transcend a current limitation of the Web - that it largely requires indexing to be accomplished merely on specific character strings. Thus, a person searching for information about "turkey" (the bird) receives from current search engines many irrelevant pages about "Turkey" (the country) and nothing about the Spanish "pavo" even if he or she is a Spanish-speaker able to understand such pages. The Semantic Web vision is to develop technology to facilitate retrieval of information via meanings, not just spellings. For this to be possible, most commentators believe, Semantic Web applications will have to draw on some kind of shared, structured, machine-readable conceptual scheme. Thus, there has been a convergence between the Semantic Web research community and an older tradition with roots in classical Artificial Intelligence (AI) research (sometimes referred to as "knowledge representation") whose goal is to develop a formal ontology. A formal ontology is a machine-readable theory of the most fundamental concepts or "categories" required in order to understand information pertaining to any knowledge domain. A review of the attempts that have been made to realize this goal provides an opportunity to reflect in interestingly concrete ways on various research questions such as the following: - How explicit a machine-understandable theory of meaning is it possible or practical to construct? - How universal a machine-understandable theory of meaning is it possible or practical to construct? - How much (and what kind of) inference support is required to realize a machine-understandable theory of meaning? - What is it for a theory of meaning to be machine-understandable anyway?
  17. Brunetti, J.M.; Roberto García, R.: User-centered design and evaluation of overview components for semantic data exploration (2014) 0.03
    0.03438644 = product of:
      0.051579658 = sum of:
        0.037957087 = weight(_text_:search in 1626) [ClassicSimilarity], result of:
          0.037957087 = score(doc=1626,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.21722981 = fieldWeight in 1626, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=1626)
        0.013622572 = product of:
          0.027245143 = sum of:
            0.027245143 = weight(_text_:22 in 1626) [ClassicSimilarity], result of:
              0.027245143 = score(doc=1626,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.15476047 = fieldWeight in 1626, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1626)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose - The growing volumes of semantic data available in the web result in the need for handling the information overload phenomenon. The potential of this amount of data is enormous but in most cases it is very difficult for users to visualize, explore and use this data, especially for lay-users without experience with Semantic Web technologies. The paper aims to discuss these issues. Design/methodology/approach - The Visual Information-Seeking Mantra "Overview first, zoom and filter, then details-on-demand" proposed by Shneiderman describes how data should be presented in different stages to achieve an effective exploration. The overview is the first user task when dealing with a data set. The objective is that the user is capable of getting an idea about the overall structure of the data set. Different information architecture (IA) components supporting the overview tasks have been developed, so they are automatically generated from semantic data, and evaluated with end-users. Findings - The chosen IA components are well known to web users, as they are present in most web pages: navigation bars, site maps and site indexes. The authors complement them with Treemaps, a visualization technique for displaying hierarchical data. These components have been developed following an iterative User-Centered Design methodology. Evaluations with end-users have shown that they get easily used to them despite the fact that they are generated automatically from structured data, without requiring knowledge about the underlying semantic technologies, and that the different overview components complement each other as they focus on different information search needs. Originality/value - Obtaining semantic data sets overviews cannot be easily done with the current semantic web browsers. Overviews become difficult to achieve with large heterogeneous data sets, which is typical in the Semantic Web, because traditional IA techniques do not easily scale to large data sets. There is little or no support to obtain overview information quickly and easily at the beginning of the exploration of a new data set. This can be a serious limitation when exploring a data set for the first time, especially for lay-users. The proposal is to reuse and adapt existing IA components to provide this overview to users and show that they can be generated automatically from the thesaurus and ontologies that structure semantic data while providing a comparable user experience to traditional web sites.
    Date
    20. 1.2015 18:30:22
    Series
    Special issue: Semantic search
  18. Ning, X.; Jin, H.; Wu, H.: RSS: a framework enabling ranked search on the semantic web (2008) 0.03
    0.033549644 = product of:
      0.100648925 = sum of:
        0.100648925 = weight(_text_:search in 2069) [ClassicSimilarity], result of:
          0.100648925 = score(doc=2069,freq=18.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.5760175 = fieldWeight in 2069, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2069)
      0.33333334 = coord(1/3)
    
    Abstract
    The semantic web not only contains resources but also includes the heterogeneous relationships among them, which is sharply distinguished from the current web. As the growth of the semantic web, specialized search techniques are of significance. In this paper, we present RSS-a framework for enabling ranked semantic search on the semantic web. In this framework, the heterogeneity of relationships is fully exploited to determine the global importance of resources. In addition, the search results can be greatly expanded with entities most semantically related to the query, thus able to provide users with properly ordered semantic search results by combining global ranking values and the relevance between the resources and the query. The proposed semantic search model which supports inference is very different from traditional keyword-based search methods. Moreover, RSS also distinguishes from many current methods of accessing the semantic web data in that it applies novel ranking strategies to prevent returning search results in disorder. The experimental results show that the framework is feasible and can produce better ordering of semantic search results than directly applying the standard PageRank algorithm on the semantic web.
  19. Trkulja, V.: Suche ist überall, Semantic Web setzt sich durch, Renaissance der Taxonomien (2005) 0.03
    0.026839714 = product of:
      0.08051914 = sum of:
        0.08051914 = weight(_text_:search in 3295) [ClassicSimilarity], result of:
          0.08051914 = score(doc=3295,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.460814 = fieldWeight in 3295, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.09375 = fieldNorm(doc=3295)
      0.33333334 = coord(1/3)
    
    Abstract
    Ein Schwerpunkt der Online Information 2004 bildete das Thema "Search": Wie wird die Suche in 2005 aussehen? Welche Bedeutung haben Taxonomien? Wie verändern sich Suchfunktionen?
  20. Fernández, M.; Cantador, I.; López, V.; Vallet, D.; Castells, P.; Motta, E.: Semantically enhanced Information Retrieval : an ontology-based approach (2011) 0.03
    0.025304725 = product of:
      0.075914174 = sum of:
        0.075914174 = weight(_text_:search in 230) [ClassicSimilarity], result of:
          0.075914174 = score(doc=230,freq=16.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.43445963 = fieldWeight in 230, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=230)
      0.33333334 = coord(1/3)
    
    Abstract
    Currently, techniques for content description and query processing in Information Retrieval (IR) are based on keywords, and therefore provide limited capabilities to capture the conceptualizations associated with user needs and contents. Aiming to solve the limitations of keyword-based models, the idea of conceptual search, understood as searching by meanings rather than literal strings, has been the focus of a wide body of research in the IR field. More recently, it has been used as a prototypical scenario (or even envisioned as a potential "killer app") in the Semantic Web (SW) vision, since its emergence in the late nineties. However, current approaches to semantic search developed in the SW area have not yet taken full advantage of the acquired knowledge, accumulated experience, and technological sophistication achieved through several decades of work in the IR field. Starting from this position, this work investigates the definition of an ontology-based IR model, oriented to the exploitation of domain Knowledge Bases to support semantic search capabilities in large document repositories, stressing on the one hand the use of fully fledged ontologies in the semantic-based perspective, and on the other hand the consideration of unstructured content as the target search space. The major contribution of this work is an innovative, comprehensive semantic search model, which extends the classic IR model, addresses the challenges of the massive and heterogeneous Web environment, and integrates the benefits of both keyword and semantic-based search. Additional contributions include: an innovative rank fusion technique that minimizes the undesired effects of knowledge sparseness on the yet juvenile SW, and the creation of a large-scale evaluation benchmark, based on TREC IR evaluation standards, which allows a rigorous comparison between IR and SW approaches. Conducted experiments show that our semantic search model obtained comparable and better performance results (in terms of MAP and P@10 values) than the best TREC automatic system.
    Series
    JWS special issue on Semantic Search

Years

Languages

  • e 51
  • d 7

Types