Search (60 results, page 1 of 3)

  • × theme_ss:"Semantic Web"
  • × type_ss:"el"
  1. Dextre Clarke, S.G.: Challenges and opportunities for KOS standards (2007) 0.17
    0.17483343 = product of:
      0.34966686 = sum of:
        0.15490833 = weight(_text_:standards in 4643) [ClassicSimilarity], result of:
          0.15490833 = score(doc=4643,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.68939996 = fieldWeight in 4643, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.109375 = fieldNorm(doc=4643)
        0.19475853 = sum of:
          0.09912981 = weight(_text_:organization in 4643) [ClassicSimilarity], result of:
            0.09912981 = score(doc=4643,freq=2.0), product of:
              0.17974974 = queryWeight, product of:
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.050415643 = queryNorm
              0.5514879 = fieldWeight in 4643, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.109375 = fieldNorm(doc=4643)
          0.09562873 = weight(_text_:22 in 4643) [ClassicSimilarity], result of:
            0.09562873 = score(doc=4643,freq=2.0), product of:
              0.17654699 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050415643 = queryNorm
              0.5416616 = fieldWeight in 4643, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.109375 = fieldNorm(doc=4643)
      0.5 = coord(2/4)
    
    Content
    Beitrag anläßlich des Seminars "Tools for knowledge organization - ISKO UK Seminar", 4. September 2007
    Date
    22. 9.2007 15:41:14
  2. Heery, R.; Wagner, H.: ¬A metadata registry for the Semantic Web (2002) 0.07
    0.06597382 = product of:
      0.087965086 = sum of:
        0.00849658 = weight(_text_:information in 1210) [ClassicSimilarity], result of:
          0.00849658 = score(doc=1210,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.0960027 = fieldWeight in 1210, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1210)
        0.06707728 = weight(_text_:standards in 1210) [ClassicSimilarity], result of:
          0.06707728 = score(doc=1210,freq=6.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.29851896 = fieldWeight in 1210, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1210)
        0.012391226 = product of:
          0.024782453 = sum of:
            0.024782453 = weight(_text_:organization in 1210) [ClassicSimilarity], result of:
              0.024782453 = score(doc=1210,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.13787198 = fieldWeight in 1210, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1210)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    * Agencies maintaining directories of data elements in a domain area in accordance with ISO/IEC 11179 (This standard specifies good practice for data element definition as well as the registration process. Example implementations are the National Health Information Knowledgebase hosted by the Australian Institute of Health and Welfare and the Environmental Data Registry hosted by the US Environmental Protection Agency.); * The xml.org directory of the Extended Markup Language (XML) document specifications facilitating re-use of Document Type Definition (DTD), hosted by the Organization for the Advancement of Structured Information Standards (OASIS); * The MetaForm database of Dublin Core usage and mappings maintained at the State and University Library in Goettingen; * The Semantic Web Agreement Group Dictionary, a database of terms for the Semantic Web that can be referred to by humans and software agents; * LEXML, a multi-lingual and multi-jurisdictional RDF Dictionary for the legal world; * The SCHEMAS registry maintained by the European Commission funded SCHEMAS project, which indexes several metadata element sets as well as a large number of activity reports describing metadata related activities and initiatives. Metadata registries essentially provide an index of terms. Given the distributed nature of the Web, there are a number of ways this can be accomplished. For example, the registry could link to terms and definitions in schemas published by implementers and stored locally by the schema maintainer. Alternatively, the registry might harvest various metadata schemas from their maintainers. Registries provide 'added value' to users by indexing schemas relevant to a particular 'domain' or 'community of use' and by simplifying the navigation of terms by enabling multiple schemas to be accessed from one view. An important benefit of this approach is an increase in the reuse of existing terms, rather than users having to reinvent them. Merging schemas to one view leads to harmonization between applications and helps avoid duplication of effort. Additionally, the establishment of registries to index terms actively being used in local implementations facilitates the metadata standards activity by providing implementation experience transferable to the standards-making process.
  3. Tudhope, D.: Knowledge Organization System Services : brief review of NKOS activities and possibility of KOS registries (2007) 0.05
    0.050532743 = product of:
      0.20213097 = sum of:
        0.20213097 = sum of:
          0.120163485 = weight(_text_:organization in 100) [ClassicSimilarity], result of:
            0.120163485 = score(doc=100,freq=4.0), product of:
              0.17974974 = queryWeight, product of:
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.050415643 = queryNorm
              0.66850436 = fieldWeight in 100, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.09375 = fieldNorm(doc=100)
          0.08196748 = weight(_text_:22 in 100) [ClassicSimilarity], result of:
            0.08196748 = score(doc=100,freq=2.0), product of:
              0.17654699 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050415643 = queryNorm
              0.46428138 = fieldWeight in 100, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.09375 = fieldNorm(doc=100)
      0.25 = coord(1/4)
    
    Content
    Beitrag anläßlich des Seminars "Tools for knowledge organization - ISKO UK Seminar", 4. September 2007.
    Date
    22. 9.2007 15:41:14
  4. Baker, T.; Bermès, E.; Coyle, K.; Dunsire, G.; Isaac, A.; Murray, P.; Panzer, M.; Schneider, J.; Singer, R.; Summers, E.; Waites, W.; Young, J.; Zeng, M.: Library Linked Data Incubator Group Final Report (2011) 0.05
    0.04769266 = product of:
      0.09538532 = sum of:
        0.006866273 = weight(_text_:information in 4796) [ClassicSimilarity], result of:
          0.006866273 = score(doc=4796,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.0775819 = fieldWeight in 4796, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=4796)
        0.088519044 = weight(_text_:standards in 4796) [ClassicSimilarity], result of:
          0.088519044 = score(doc=4796,freq=8.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.39394283 = fieldWeight in 4796, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.03125 = fieldNorm(doc=4796)
      0.5 = coord(2/4)
    
    Abstract
    The mission of the W3C Library Linked Data Incubator Group, chartered from May 2010 through August 2011, has been "to help increase global interoperability of library data on the Web, by bringing together people involved in Semantic Web activities - focusing on Linked Data - in the library community and beyond, building on existing initiatives, and identifying collaboration tracks for the future." In Linked Data [LINKEDDATA], data is expressed using standards such as Resource Description Framework (RDF) [RDF], which specifies relationships between things, and Uniform Resource Identifiers (URIs, or "Web addresses") [URI]. This final report of the Incubator Group examines how Semantic Web standards and Linked Data principles can be used to make the valuable information assets that library create and curate - resources such as bibliographic data, authorities, and concept schemes - more visible and re-usable outside of their original library context on the wider Web. The Incubator Group began by eliciting reports on relevant activities from parties ranging from small, independent projects to national library initiatives (see the separate report, Library Linked Data Incubator Group: Use Cases) [USECASE]. These use cases provided the starting point for the work summarized in the report: an analysis of the benefits of library Linked Data, a discussion of current issues with regard to traditional library data, existing library Linked Data initiatives, and legal rights over library data; and recommendations for next steps. The report also summarizes the results of a survey of current Linked Data technologies and an inventory of library Linked Data resources available today (see also the more detailed report, Library Linked Data Incubator Group: Datasets, Value Vocabularies, and Metadata Element Sets) [VOCABDATASET].
    Key recommendations of the report are: - That library leaders identify sets of data as possible candidates for early exposure as Linked Data and foster a discussion about Open Data and rights; - That library standards bodies increase library participation in Semantic Web standardization, develop library data standards that are compatible with Linked Data, and disseminate best-practice design patterns tailored to library Linked Data; - That data and systems designers design enhanced user services based on Linked Data capabilities, create URIs for the items in library datasets, develop policies for managing RDF vocabularies and their URIs, and express library data by re-using or mapping to existing Linked Data vocabularies; - That librarians and archivists preserve Linked Data element sets and value vocabularies and apply library experience in curation and long-term preservation to Linked Data datasets.
  5. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.05
    0.04765854 = product of:
      0.09531708 = sum of:
        0.07824052 = weight(_text_:standards in 4553) [ClassicSimilarity], result of:
          0.07824052 = score(doc=4553,freq=4.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.34819958 = fieldWeight in 4553, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4553)
        0.01707656 = product of:
          0.03415312 = sum of:
            0.03415312 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
              0.03415312 = score(doc=4553,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.19345059 = fieldWeight in 4553, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Semantic Web knowledge representation standards, and in particular RDF and OWL, often come endowed with a formal semantics which is considered to be of fundamental importance for the field. Reasoning, i.e., the drawing of logical inferences from knowledge expressed in such standards, is traditionally based on logical deductive methods and algorithms which can be proven to be sound and complete and terminating, i.e. correct in a very strong sense. For various reasons, though, in particular the scalability issues arising from the ever increasing amounts of Semantic Web data available and the inability of deductive algorithms to deal with noise in the data, it has been argued that alternative means of reasoning should be investigated which bear high promise for high scalability and better robustness. From this perspective, deductive algorithms can be considered the gold standard regarding correctness against which alternative methods need to be tested. In this paper, we show that it is possible to train a Deep Learning system on RDF knowledge graphs, such that it is able to perform reasoning over new RDF knowledge graphs, with high precision and recall compared to the deductive gold standard.
    Date
    16.11.2018 14:22:01
  6. Hogan, A.; Harth, A.; Umbrich, J.; Kinsella, S.; Polleres, A.; Decker, S.: Searching and browsing Linked Data with SWSE : the Semantic Web Search Engine (2011) 0.04
    0.04341168 = product of:
      0.08682336 = sum of:
        0.008582841 = weight(_text_:information in 438) [ClassicSimilarity], result of:
          0.008582841 = score(doc=438,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 438, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=438)
        0.07824052 = weight(_text_:standards in 438) [ClassicSimilarity], result of:
          0.07824052 = score(doc=438,freq=4.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.34819958 = fieldWeight in 438, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0390625 = fieldNorm(doc=438)
      0.5 = coord(2/4)
    
    Abstract
    In this paper, we discuss the architecture and implementation of the Semantic Web Search Engine (SWSE). Following traditional search engine architecture, SWSE consists of crawling, data enhancing, indexing and a user interface for search, browsing and retrieval of information; unlike traditional search engines, SWSE operates over RDF Web data - loosely also known as Linked Data - which implies unique challenges for the system design, architecture, algorithms, implementation and user interface. In particular, many challenges exist in adopting Semantic Web technologies for Web data: the unique challenges of the Web - in terms of scale, unreliability, inconsistency and noise - are largely overlooked by the current Semantic Web standards. Herein, we describe the current SWSE system, initially detailing the architecture and later elaborating upon the function, design, implementation and performance of each individual component. In so doing, we also give an insight into how current Semantic Web standards can be tailored, in a best-effort manner, for use on Web data. Throughout, we offer evaluation and complementary argumentation to support our design choices, and also offer discussion on future directions and open research questions. Later, we also provide candid discussion relating to the difficulties currently faced in bringing such a search engine into the mainstream, and lessons learnt from roughly six years working on the Semantic Web Search Engine project.
  7. Broughton, V.: Automatic metadata generation : Digital resource description without human intervention (2007) 0.04
    0.041733973 = product of:
      0.16693589 = sum of:
        0.16693589 = sum of:
          0.08496841 = weight(_text_:organization in 6048) [ClassicSimilarity], result of:
            0.08496841 = score(doc=6048,freq=2.0), product of:
              0.17974974 = queryWeight, product of:
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.050415643 = queryNorm
              0.47270393 = fieldWeight in 6048, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.09375 = fieldNorm(doc=6048)
          0.08196748 = weight(_text_:22 in 6048) [ClassicSimilarity], result of:
            0.08196748 = score(doc=6048,freq=2.0), product of:
              0.17654699 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050415643 = queryNorm
              0.46428138 = fieldWeight in 6048, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.09375 = fieldNorm(doc=6048)
      0.25 = coord(1/4)
    
    Content
    Beitrag anläßlich des Seminars "Tools for knowledge organization - ISKO UK Seminar", 4. September 2007.
    Date
    22. 9.2007 15:41:14
  8. Vatant, B.: Porting library vocabularies to the Semantic Web, and back : a win-win round trip (2010) 0.04
    0.040477425 = product of:
      0.08095485 = sum of:
        0.014565565 = weight(_text_:information in 3968) [ClassicSimilarity], result of:
          0.014565565 = score(doc=3968,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.16457605 = fieldWeight in 3968, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3968)
        0.066389285 = weight(_text_:standards in 3968) [ClassicSimilarity], result of:
          0.066389285 = score(doc=3968,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.29545712 = fieldWeight in 3968, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.046875 = fieldNorm(doc=3968)
      0.5 = coord(2/4)
    
    Abstract
    The role of vocabularies is critical in the long overdue synergy between the Web and Library heritage. The Semantic Web should leverage existing vocabularies instead of reinventing them, but the specific features of library vocabularies make them more or less portable to the Semantic Web. Based on preliminary results in the framework of the TELplus project, we suggest guidelines for needed evolutions in order to make vocabularies usable and efficient in the Semantic Web realm, assess choices made so far by large libraries to publish vocabularies conformant to standards and good practices, and review how Semantic Web tools can help managing those vocabularies.
    Content
    Vortrag im Rahmen der Session 93. Cataloguing der WORLD LIBRARY AND INFORMATION CONGRESS: 76TH IFLA GENERAL CONFERENCE AND ASSEMBLY, 10-15 August 2010, Gothenburg, Sweden - 149. Information Technology, Cataloguing, Classification and Indexing with Knowledge Management
  9. SKOS Simple Knowledge Organization System Reference : W3C Recommendation 18 August 2009 (2009) 0.03
    0.033250365 = product of:
      0.06650073 = sum of:
        0.01029941 = weight(_text_:information in 4688) [ClassicSimilarity], result of:
          0.01029941 = score(doc=4688,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 4688, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4688)
        0.05620132 = product of:
          0.11240264 = sum of:
            0.11240264 = weight(_text_:organization in 4688) [ClassicSimilarity], result of:
              0.11240264 = score(doc=4688,freq=14.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.62532854 = fieldWeight in 4688, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4688)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This document defines the Simple Knowledge Organization System (SKOS), a common data model for sharing and linking knowledge organization systems via the Web. Many knowledge organization systems, such as thesauri, taxonomies, classification schemes and subject heading systems, share a similar structure, and are used in similar applications. SKOS captures much of this similarity and makes it explicit, to enable data and technology sharing across diverse applications. The SKOS data model provides a standard, low-cost migration path for porting existing knowledge organization systems to the Semantic Web. SKOS also provides a lightweight, intuitive language for developing and sharing new knowledge organization systems. It may be used on its own, or in combination with formal knowledge representation languages such as the Web Ontology language (OWL). This document is the normative specification of the Simple Knowledge Organization System. It is intended for readers who are involved in the design and implementation of information systems, and who already have a good understanding of Semantic Web technology, especially RDF and OWL. For an informative guide to using SKOS, see the [SKOS-PRIMER].
  10. Bohne-Lang, A.: Semantische Metadaten für den Webauftritt einer Bibliothek (2016) 0.03
    0.03195362 = product of:
      0.06390724 = sum of:
        0.008582841 = weight(_text_:information in 3337) [ClassicSimilarity], result of:
          0.008582841 = score(doc=3337,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 3337, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3337)
        0.0553244 = weight(_text_:standards in 3337) [ClassicSimilarity], result of:
          0.0553244 = score(doc=3337,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.24621427 = fieldWeight in 3337, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3337)
      0.5 = coord(2/4)
    
    Abstract
    Das Semantic Web ist schon seit über 10 Jahren viel beachtet und hat mit der Verfügbarkeit von Resource Description Framework (RDF) und den entsprechenden Ontologien einen großen Sprung in die Praxis gemacht. Vertreter kleiner Bibliotheken und Bibliothekare mit geringer Technik-Affinität stehen aber im Alltag vor großen Hürden, z.B. bei der Frage, wie man diese Technik konkret in den eigenen Webauftritt einbinden kann: man kommt sich vor wie Don Quijote, der versucht die Windmühlen zu bezwingen. RDF mit seinen Ontologien ist fast unverständlich komplex für Nicht-Informatiker und somit für den praktischen Einsatz auf Bibliotheksseiten in der Breite nicht direkt zu gebrauchen. Mit Schema.org wurde ursprünglich von den drei größten Suchmaschinen der Welt Google, Bing und Yahoo eine einfach und effektive semantische Beschreibung von Entitäten entwickelt. Aktuell wird Schema.org durch Google, Microsoft, Yahoo und Yandex weiter gesponsert und von vielen weiteren Suchmaschinen verstanden. Vor diesem Hintergrund hat die Bibliothek der Medizinischen Fakultät Mannheim auf ihrer Homepage (http://www.umm.uni-heidelberg.de/bibl/) verschiedene maschinenlesbare semantische Metadaten eingebettet. Sehr interessant und zukunftsweisend ist die neueste Entwicklung von Schema.org, bei der man eine 'Library' (https://schema.org/Library) mit Öffnungszeiten und vielem mehr modellieren kann. Ferner haben wir noch semantische Metadaten im Open Graph- und Dublin Core-Format eingebettet, um alte Standards und Facebook-konforme Informationen maschinenlesbar zur Verfügung zu stellen.
    Source
    GMS Medizin - Bibliothek - Information. 16(2016) Nr.3, 11 S. [http://www.egms.de/static/pdf/journals/mbi/2017-16/mbi000372.pdf]
  11. Eckert, K.: SKOS: eine Sprache für die Übertragung von Thesauri ins Semantic Web (2011) 0.03
    0.027822647 = product of:
      0.11129059 = sum of:
        0.11129059 = sum of:
          0.056645606 = weight(_text_:organization in 4331) [ClassicSimilarity], result of:
            0.056645606 = score(doc=4331,freq=2.0), product of:
              0.17974974 = queryWeight, product of:
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.050415643 = queryNorm
              0.31513596 = fieldWeight in 4331, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.0625 = fieldNorm(doc=4331)
          0.054644987 = weight(_text_:22 in 4331) [ClassicSimilarity], result of:
            0.054644987 = score(doc=4331,freq=2.0), product of:
              0.17654699 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050415643 = queryNorm
              0.30952093 = fieldWeight in 4331, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=4331)
      0.25 = coord(1/4)
    
    Abstract
    Das Semantic Web - bzw. Linked Data - hat das Potenzial, die Verfügbarkeit von Daten und Wissen, sowie den Zugriff darauf zu revolutionieren. Einen großen Beitrag dazu können Wissensorganisationssysteme wie Thesauri leisten, die die Daten inhaltlich erschließen und strukturieren. Leider sind immer noch viele dieser Systeme lediglich in Buchform oder in speziellen Anwendungen verfügbar. Wie also lassen sie sich für das Semantic Web nutzen? Das Simple Knowledge Organization System (SKOS) bietet eine Möglichkeit, die Wissensorganisationssysteme in eine Form zu "übersetzen", die im Web zitiert und mit anderen Resourcen verknüpft werden kann.
    Date
    15. 3.2011 19:21:22
  12. Jacobs, I.: From chaos, order: W3C standard helps organize knowledge : SKOS Connects Diverse Knowledge Organization Systems to Linked Data (2009) 0.02
    0.022726912 = product of:
      0.045453824 = sum of:
        0.010406143 = weight(_text_:information in 3062) [ClassicSimilarity], result of:
          0.010406143 = score(doc=3062,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.11757882 = fieldWeight in 3062, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=3062)
        0.03504768 = product of:
          0.07009536 = sum of:
            0.07009536 = weight(_text_:organization in 3062) [ClassicSimilarity], result of:
              0.07009536 = score(doc=3062,freq=16.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.38996086 = fieldWeight in 3062, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=3062)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    18 August 2009 -- Today W3C announces a new standard that builds a bridge between the world of knowledge organization systems - including thesauri, classifications, subject headings, taxonomies, and folksonomies - and the linked data community, bringing benefits to both. Libraries, museums, newspapers, government portals, enterprises, social networking applications, and other communities that manage large collections of books, historical artifacts, news reports, business glossaries, blog entries, and other items can now use Simple Knowledge Organization System (SKOS) to leverage the power of linked data. As different communities with expertise and established vocabularies use SKOS to integrate them into the Semantic Web, they increase the value of the information for everyone.
    Content
    SKOS Adapts to the Diversity of Knowledge Organization Systems A useful starting point for understanding the role of SKOS is the set of subject headings published by the US Library of Congress (LOC) for categorizing books, videos, and other library resources. These headings can be used to broaden or narrow queries for discovering resources. For instance, one can narrow a query about books on "Chinese literature" to "Chinese drama," or further still to "Chinese children's plays." Library of Congress subject headings have evolved within a community of practice over a period of decades. By now publishing these subject headings in SKOS, the Library of Congress has made them available to the linked data community, which benefits from a time-tested set of concepts to re-use in their own data. This re-use adds value ("the network effect") to the collection. When people all over the Web re-use the same LOC concept for "Chinese drama," or a concept from some other vocabulary linked to it, this creates many new routes to the discovery of information, and increases the chances that relevant items will be found. As an example of mapping one vocabulary to another, a combined effort from the STITCH, TELplus and MACS Projects provides links between LOC concepts and RAMEAU, a collection of French subject headings used by the Bibliothèque Nationale de France and other institutions. SKOS can be used for subject headings but also many other approaches to organizing knowledge. Because different communities are comfortable with different organization schemes, SKOS is designed to port diverse knowledge organization systems to the Web. "Active participation from the library and information science community in the development of SKOS over the past seven years has been key to ensuring that SKOS meets a variety of needs," said Thomas Baker, co-chair of the Semantic Web Deployment Working Group, which published SKOS. "One goal in creating SKOS was to provide new uses for well-established knowledge organization systems by providing a bridge to the linked data cloud." SKOS is part of the Semantic Web technology stack. Like the Web Ontology Language (OWL), SKOS can be used to define vocabularies. But the two technologies were designed to meet different needs. SKOS is a simple language with just a few features, tuned for sharing and linking knowledge organization systems such as thesauri and classification schemes. OWL offers a general and powerful framework for knowledge representation, where additional "rigor" can afford additional benefits (for instance, business rule processing). To get started with SKOS, see the SKOS Primer.
  13. Mayfield, J.; Finin, T.: Information retrieval on the Semantic Web : integrating inference and retrieval 0.02
    0.020450171 = product of:
      0.040900342 = sum of:
        0.01699316 = weight(_text_:information in 4330) [ClassicSimilarity], result of:
          0.01699316 = score(doc=4330,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.1920054 = fieldWeight in 4330, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4330)
        0.023907183 = product of:
          0.047814365 = sum of:
            0.047814365 = weight(_text_:22 in 4330) [ClassicSimilarity], result of:
              0.047814365 = score(doc=4330,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.2708308 = fieldWeight in 4330, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4330)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    One vision of the Semantic Web is that it will be much like the Web we know today, except that documents will be enriched by annotations in machine understandable markup. These annotations will provide metadata about the documents as well as machine interpretable statements capturing some of the meaning of document content. We discuss how the information retrieval paradigm might be recast in such an environment. We suggest that retrieval can be tightly bound to inference. Doing so makes today's Web search engines useful to Semantic Web inference engines, and causes improvements in either retrieval or inference to lead directly to improvements in the other.
    Date
    12. 2.2011 17:35:22
  14. Heflin, J.; Hendler, J.: Semantic interoperability on the Web (2000) 0.02
    0.01796158 = product of:
      0.03592316 = sum of:
        0.012015978 = weight(_text_:information in 759) [ClassicSimilarity], result of:
          0.012015978 = score(doc=759,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.13576832 = fieldWeight in 759, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=759)
        0.023907183 = product of:
          0.047814365 = sum of:
            0.047814365 = weight(_text_:22 in 759) [ClassicSimilarity], result of:
              0.047814365 = score(doc=759,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.2708308 = fieldWeight in 759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=759)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    XML will have a profound impact on the way data is exchanged on the Internet. An important feature of this language is the separation of content from presentation, which makes it easier to select and/or reformat the data. However, due to the likelihood of numerous industry and domain specific DTDs, those who wish to integrate information will still be faced with the problem of semantic interoperability. In this paper we discuss why this problem is not solved by XML, and then discuss why the Resource Description Framework is only a partial solution. We then present the SHOE language, which we feel has many of the features necessary to enable a semantic web, and describe an existing set of tools that make it easy to use the language.
    Date
    11. 5.2013 19:22:18
  15. Panzer, M.: Relationships, spaces, and the two faces of Dewey (2008) 0.02
    0.017024403 = product of:
      0.034048807 = sum of:
        0.01029941 = weight(_text_:information in 2127) [ClassicSimilarity], result of:
          0.01029941 = score(doc=2127,freq=8.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 2127, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2127)
        0.023749396 = product of:
          0.047498792 = sum of:
            0.047498792 = weight(_text_:organization in 2127) [ClassicSimilarity], result of:
              0.047498792 = score(doc=2127,freq=10.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.26424956 = fieldWeight in 2127, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=2127)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Content
    "When dealing with a large-scale and widely-used knowledge organization system like the Dewey Decimal Classification, we often tend to focus solely on the organization aspect, which is closely intertwined with editorial work. This is perfectly understandable, since developing and updating the DDC, keeping up with current scientific developments, spotting new trends in both scholarly communication and popular publishing, and figuring out how to fit those patterns into the structure of the scheme are as intriguing as they are challenging. From the organization perspective, the intended user of the scheme is mainly the classifier. Dewey acts very much as a number-building engine, providing richly documented concepts to help with classification decisions. Since the Middle Ages, quasi-religious battles have been fought over the "valid" arrangement of places according to specific views of the world, as parodied by Jorge Luis Borges and others. Organizing knowledge has always been primarily an ontological activity; it is about putting the world into the classification. However, there is another side to this coin--the discovery side. While the hierarchical organization of the DDC establishes a default set of places and neighborhoods that is also visible in the physical manifestation of library shelves, this is just one set of relationships in the DDC. A KOS (Knowledge Organization System) becomes powerful by expressing those other relationships in a manner that not only collocates items in a physical place but in a knowledge space, and exposes those other relationships in ways beneficial and congenial to the unique perspective of an information seeker.
    What are those "other" relationships that Dewey possesses and that seem so important to surface? Firstly, there is the relationship of concepts to resources. Dewey has been used for a long time, and over 200,000 numbers are assigned to information resources each year and added to WorldCat by the Library of Congress and the German National Library alone. Secondly, we have relationships between concepts in the scheme itself. Dewey provides a rich set of non-hierarchical relations, indicating other relevant and related subjects across disciplinary boundaries. Thirdly, perhaps most importantly, there is the relationship between the same concepts across different languages. Dewey has been translated extensively, and current versions are available in French, German, Hebrew, Italian, Spanish, and Vietnamese. Briefer representations of the top-three levels (the DDC Summaries) are available in several languages in the DeweyBrowser. This multilingual nature of the scheme allows searchers to access a broader range of resources or to switch the language of--and thus localize--subject metadata seamlessly. MelvilClass, a Dewey front-end developed by the German National Library for the German translation, could be used as a common interface to the DDC in any language, as it is built upon the standard DDC data format. It is not hard to give an example of the basic terminology of a class pulled together in a multilingual way: <class/794.8> a skos:Concept ; skos:notation "794.8"^^ddc:notation ; skos:prefLabel "Computer games"@en ; skos:prefLabel "Computerspiele"@de ; skos:prefLabel "Jeux sur ordinateur"@fr ; skos:prefLabel "Juegos por computador"@es .
    Expressed in such manner, the Dewey number provides a language-independent representation of a Dewey concept, accompanied by language-dependent assertions about the concept. This information, identified by a URI, can be easily consumed by semantic web agents and used in various metadata scenarios. Fourthly, as we have seen, it is important to play well with others, i.e., establishing and maintaining relationships to other KOS and making the scheme available in different formats. As noted in the Dewey blog post "Tags and Dewey," since no single scheme is ever going to be the be-all, end-all solution for knowledge discovery, DDC concepts have been extensively mapped to other vocabularies and taxonomies, sometimes bridging them and acting as a backbone, sometimes using them as additional access vocabulary to be able to do more work "behind the scenes." To enable other applications and schemes to make use of those relationships, the full Dewey database is available in XML format; RDF-based formats and a web service are forthcoming. Pulling those relationships together under a common surface will be the next challenge going forward. In the semantic web community the concept of Linked Data (http://en.wikipedia.org/wiki/Linked_Data) currently receives some attention, with its emphasis on exposing and connecting data using technologies like URIs, HTTP and RDF to improve information discovery on the web. With its focus on relationships and discovery, it seems that Dewey will be well prepared to become part of this big linked data set. Now it is about putting the classification back into the world!"
  16. Maltese, V.; Farazi, F.: Towards the integration of knowledge organization systems with the linked data cloud (2011) 0.02
    0.01680845 = product of:
      0.0336169 = sum of:
        0.008582841 = weight(_text_:information in 602) [ClassicSimilarity], result of:
          0.008582841 = score(doc=602,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 602, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=602)
        0.025034059 = product of:
          0.050068118 = sum of:
            0.050068118 = weight(_text_:organization in 602) [ClassicSimilarity], result of:
              0.050068118 = score(doc=602,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.27854347 = fieldWeight in 602, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=602)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    In representing the shared view of all the people involved, building a Knowledge Organization System (KOS) from scratch is extremely costly, and it is therefore fundamental to reuse existing resources. This can be done by progressively extending the KOS with knowledge coming from similar KOS and by promoting interoperability among them. The linked data initiative is indeed fostering people to share and integrate their datasets into a giant network of interconnected resources. This enables different applications to interoperate and share their data. However, the integration should take into account the purpose of the datasets and make explicit the semantics. In fact, the difference in the purpose is reflected in the difference in the semantics. With this paper we (a) highlight the potential problems that may arise by not taking into account purpose and semantics, (b) make clear how the difference in the purpose is reflected in totally different semantics and (c) provide an algorithm to translate from one semantic into another as a preliminary step towards the integration of ontologies designed for different purposes. This will allow reusing the ontologies even in contexts different from those in which they were designed.
    Imprint
    Trento : University of Trento / Department of Information engineering and Computer Science
  17. Martínez-González, M.M.; Alvite-Díez, M.L.: Thesauri and Semantic Web : discussion of the evolution of thesauri toward their integration with the Semantic Web (2019) 0.02
    0.01680845 = product of:
      0.0336169 = sum of:
        0.008582841 = weight(_text_:information in 5997) [ClassicSimilarity], result of:
          0.008582841 = score(doc=5997,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 5997, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5997)
        0.025034059 = product of:
          0.050068118 = sum of:
            0.050068118 = weight(_text_:organization in 5997) [ClassicSimilarity], result of:
              0.050068118 = score(doc=5997,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.27854347 = fieldWeight in 5997, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5997)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Thesauri are Knowledge Organization Systems (KOS), that arise from the consensus of wide communities. They have been in use for many years and are regularly updated. Whereas in the past thesauri were designed for information professionals for indexing and searching, today there is a demand for conceptual vocabularies that enable inferencing by machines. The development of the Semantic Web has brought a new opportunity for thesauri, but thesauri also face the challenge of proving that they add value to it. The evolution of thesauri toward their integration with the Semantic Web is examined. Elements and structures in the thesaurus standard, ISO 25964, and SKOS (Simple Knowledge Organization System), the Semantic Web standard for representing KOS, are reviewed and compared. Moreover, the integrity rules of thesauri are contrasted with the axioms of SKOS. How SKOS has been applied to represent some real thesauri is taken into account. Three thesauri are chosen for this aim: AGROVOC, EuroVoc and the UNESCO Thesaurus. Based on the results of this comparison and analysis, the benefits that Semantic Web technologies offer to thesauri, how thesauri can contribute to the Semantic Web, and the challenges that would help to improve their integration with the Semantic Web are discussed.
  18. Knowledge graphs : new directions for knowledge representation on the Semantic Web (2019) 0.01
    0.0138311 = product of:
      0.0553244 = sum of:
        0.0553244 = weight(_text_:standards in 51) [ClassicSimilarity], result of:
          0.0553244 = score(doc=51,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.24621427 = fieldWeight in 51, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0390625 = fieldNorm(doc=51)
      0.25 = coord(1/4)
    
    Abstract
    The increasingly pervasive nature of the Web, expanding to devices and things in everydaylife, along with new trends in Artificial Intelligence call for new paradigms and a new look onKnowledge Representation and Processing at scale for the Semantic Web. The emerging, but stillto be concretely shaped concept of "Knowledge Graphs" provides an excellent unifying metaphorfor this current status of Semantic Web research. More than two decades of Semantic Webresearch provides a solid basis and a promising technology and standards stack to interlink data,ontologies and knowledge on the Web. However, neither are applications for Knowledge Graphsas such limited to Linked Open Data, nor are instantiations of Knowledge Graphs in enterprises- while often inspired by - limited to the core Semantic Web stack. This report documents theprogram and the outcomes of Dagstuhl Seminar 18371 "Knowledge Graphs: New Directions forKnowledge Representation on the Semantic Web", where a group of experts from academia andindustry discussed fundamental questions around these topics for a week in early September 2018,including the following: what are knowledge graphs? Which applications do we see to emerge?Which open research questions still need be addressed and which technology gaps still need tobe closed?
  19. Schmitz-Esser, W.; Sigel, A.: Introducing terminology-based ontologies : Papers and Materials presented by the authors at the workshop "Introducing Terminology-based Ontologies" (Poli/Schmitz-Esser/Sigel) at the 9th International Conference of the International Society for Knowledge Organization (ISKO), Vienna, Austria, July 6th, 2006 (2006) 0.01
    0.009198101 = product of:
      0.036792405 = sum of:
        0.036792405 = product of:
          0.07358481 = sum of:
            0.07358481 = weight(_text_:organization in 1285) [ClassicSimilarity], result of:
              0.07358481 = score(doc=1285,freq=6.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.40937364 = fieldWeight in 1285, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1285)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    This work-in-progress communication contains the papers and materials presented by Winfried Schmitz-Esser and Alexander Sigel in the joint workshop (with Roberto Poli) "Introducing Terminology-based Ontologies" at the 9th International Conference of the International Society for Knowledge Organization (ISKO), Vienna, Austria, July 6th, 2006.
    Content
    Inhalt: 1. From traditional Knowledge Organization Systems (authority files, classifications, thesauri) towards ontologies on the web (Alexander Sigel) (Tutorial. Paper with Slides interspersed) pp. 3-53 2. Introduction to Integrative Cross-Language Ontology (ICLO): Formalizing and interrelating textual knowledge to enable intelligent action and knowledge sharing (Winfried Schmitz-Esser) pp. 54-113 3. First Idea Sketch on Modelling ICLO with Topic Maps (Alexander Sigel) (Work in progress paper. Topic maps available from the author) pp. 114-130
  20. OWL Web Ontology Language Test Cases (2004) 0.01
    0.0068306234 = product of:
      0.027322493 = sum of:
        0.027322493 = product of:
          0.054644987 = sum of:
            0.054644987 = weight(_text_:22 in 4685) [ClassicSimilarity], result of:
              0.054644987 = score(doc=4685,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.30952093 = fieldWeight in 4685, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4685)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    14. 8.2011 13:33:22

Languages

  • e 52
  • d 6
  • f 1
  • More… Less…

Types