Search (66 results, page 1 of 4)

  • × theme_ss:"Semantic Web"
  • × type_ss:"el"
  1. Kara, S.: ¬An ontology-based retrieval system using semantic indexing (2012) 0.02
    0.015440235 = product of:
      0.07205443 = sum of:
        0.032266766 = weight(_text_:system in 3829) [ClassicSimilarity], result of:
          0.032266766 = score(doc=3829,freq=8.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.41757566 = fieldWeight in 3829, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=3829)
        0.0100241685 = weight(_text_:information in 3829) [ClassicSimilarity], result of:
          0.0100241685 = score(doc=3829,freq=8.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.23274569 = fieldWeight in 3829, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3829)
        0.029763501 = weight(_text_:retrieval in 3829) [ClassicSimilarity], result of:
          0.029763501 = score(doc=3829,freq=8.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.40105087 = fieldWeight in 3829, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=3829)
      0.21428572 = coord(3/14)
    
    Abstract
    In this thesis, we present an ontology-based information extraction and retrieval system and its application to soccer domain. In general, we deal with three issues in semantic search, namely, usability, scalability and retrieval performance. We propose a keyword-based semantic retrieval approach. The performance of the system is improved considerably using domain-specific information extraction, inference and rules. Scalability is achieved by adapting a semantic indexing approach. The system is implemented using the state-of-the-art technologies in SemanticWeb and its performance is evaluated against traditional systems as well as the query expansion methods. Furthermore, a detailed evaluation is provided to observe the performance gain due to domain-specific information extraction and inference. Finally, we show how we use semantic indexing to solve simple structural ambiguities.
    Source
    Information Systems. 37(2012) no. 4, S.294-305
  2. Mayfield, J.; Finin, T.: Information retrieval on the Semantic Web : integrating inference and retrieval 0.01
    0.012584222 = product of:
      0.058726367 = sum of:
        0.008269517 = weight(_text_:information in 4330) [ClassicSimilarity], result of:
          0.008269517 = score(doc=4330,freq=4.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.1920054 = fieldWeight in 4330, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4330)
        0.038822707 = weight(_text_:retrieval in 4330) [ClassicSimilarity], result of:
          0.038822707 = score(doc=4330,freq=10.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.5231199 = fieldWeight in 4330, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4330)
        0.011634145 = product of:
          0.02326829 = sum of:
            0.02326829 = weight(_text_:22 in 4330) [ClassicSimilarity], result of:
              0.02326829 = score(doc=4330,freq=2.0), product of:
                0.085914485 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02453417 = queryNorm
                0.2708308 = fieldWeight in 4330, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4330)
          0.5 = coord(1/2)
      0.21428572 = coord(3/14)
    
    Abstract
    One vision of the Semantic Web is that it will be much like the Web we know today, except that documents will be enriched by annotations in machine understandable markup. These annotations will provide metadata about the documents as well as machine interpretable statements capturing some of the meaning of document content. We discuss how the information retrieval paradigm might be recast in such an environment. We suggest that retrieval can be tightly bound to inference. Doing so makes today's Web search engines useful to Semantic Web inference engines, and causes improvements in either retrieval or inference to lead directly to improvements in the other.
    Date
    12. 2.2011 17:35:22
  3. Ding, L.; Finin, T.; Joshi, A.; Peng, Y.; Cost, R.S.; Sachs, J.; Pan, R.; Reddivari, P.; Doshi, V.: Swoogle : a Semantic Web search and metadata engine (2004) 0.01
    0.0109178955 = product of:
      0.050950177 = sum of:
        0.022816047 = weight(_text_:system in 4704) [ClassicSimilarity], result of:
          0.022816047 = score(doc=4704,freq=4.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.29527056 = fieldWeight in 4704, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=4704)
        0.0070881573 = weight(_text_:information in 4704) [ClassicSimilarity], result of:
          0.0070881573 = score(doc=4704,freq=4.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.16457605 = fieldWeight in 4704, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4704)
        0.021045974 = weight(_text_:retrieval in 4704) [ClassicSimilarity], result of:
          0.021045974 = score(doc=4704,freq=4.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.2835858 = fieldWeight in 4704, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=4704)
      0.21428572 = coord(3/14)
    
    Abstract
    Swoogle is a crawler-based indexing and retrieval system for the Semantic Web, i.e., for Web documents in RDF or OWL. It extracts metadata for each discovered document, and computes relations between documents. Discovered documents are also indexed by an information retrieval system which can use either character N-Gram or URIrefs as keywords to find relevant documents and to compute the similarity among a set of documents. One of the interesting properties we compute is rank, a measure of the importance of a Semantic Web document.
    Source
    CIKM '04 Proceedings of the thirteenth ACM international conference on Information and knowledge management
  4. Hogan, A.; Harth, A.; Umbrich, J.; Kinsella, S.; Polleres, A.; Decker, S.: Searching and browsing Linked Data with SWSE : the Semantic Web Search Engine (2011) 0.01
    0.007626765 = product of:
      0.03559157 = sum of:
        0.019013375 = weight(_text_:system in 438) [ClassicSimilarity], result of:
          0.019013375 = score(doc=438,freq=4.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.24605882 = fieldWeight in 438, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=438)
        0.004176737 = weight(_text_:information in 438) [ClassicSimilarity], result of:
          0.004176737 = score(doc=438,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.09697737 = fieldWeight in 438, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=438)
        0.012401459 = weight(_text_:retrieval in 438) [ClassicSimilarity], result of:
          0.012401459 = score(doc=438,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.16710453 = fieldWeight in 438, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=438)
      0.21428572 = coord(3/14)
    
    Abstract
    In this paper, we discuss the architecture and implementation of the Semantic Web Search Engine (SWSE). Following traditional search engine architecture, SWSE consists of crawling, data enhancing, indexing and a user interface for search, browsing and retrieval of information; unlike traditional search engines, SWSE operates over RDF Web data - loosely also known as Linked Data - which implies unique challenges for the system design, architecture, algorithms, implementation and user interface. In particular, many challenges exist in adopting Semantic Web technologies for Web data: the unique challenges of the Web - in terms of scale, unreliability, inconsistency and noise - are largely overlooked by the current Semantic Web standards. Herein, we describe the current SWSE system, initially detailing the architecture and later elaborating upon the function, design, implementation and performance of each individual component. In so doing, we also give an insight into how current Semantic Web standards can be tailored, in a best-effort manner, for use on Web data. Throughout, we offer evaluation and complementary argumentation to support our design choices, and also offer discussion on future directions and open research questions. Later, we also provide candid discussion relating to the difficulties currently faced in bringing such a search engine into the mainstream, and lessons learnt from roughly six years working on the Semantic Web Search Engine project.
  5. Tudhope, D.: Knowledge Organization System Services : brief review of NKOS activities and possibility of KOS registries (2007) 0.01
    0.007458717 = product of:
      0.052211016 = sum of:
        0.032266766 = weight(_text_:system in 100) [ClassicSimilarity], result of:
          0.032266766 = score(doc=100,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.41757566 = fieldWeight in 100, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.09375 = fieldNorm(doc=100)
        0.019944249 = product of:
          0.039888497 = sum of:
            0.039888497 = weight(_text_:22 in 100) [ClassicSimilarity], result of:
              0.039888497 = score(doc=100,freq=2.0), product of:
                0.085914485 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02453417 = queryNorm
                0.46428138 = fieldWeight in 100, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=100)
          0.5 = coord(1/2)
      0.14285715 = coord(2/14)
    
    Date
    22. 9.2007 15:41:14
  6. Scheir, P.; Pammer, V.; Lindstaedt, S.N.: Information retrieval on the Semantic Web : does it exist? (2007) 0.01
    0.006828477 = product of:
      0.047799338 = sum of:
        0.013075255 = weight(_text_:information in 4329) [ClassicSimilarity], result of:
          0.013075255 = score(doc=4329,freq=10.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.3035872 = fieldWeight in 4329, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4329)
        0.034724083 = weight(_text_:retrieval in 4329) [ClassicSimilarity], result of:
          0.034724083 = score(doc=4329,freq=8.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.46789268 = fieldWeight in 4329, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4329)
      0.14285715 = coord(2/14)
    
    Abstract
    Plenty of contemporary attempts to search exist that are associated with the area of Semantic Web. But which of them qualify as information retrieval for the Semantic Web? Do such approaches exist? To answer these questions we take a look at the nature of the Semantic Web and Semantic Desktop and at definitions for information and data retrieval. We survey current approaches referred to by their authors as information retrieval for the Semantic Web or that use Semantic Web technology for search.
    Source
    Lernen - Wissen - Adaption : workshop proceedings / LWA 2007, Halle, September 2007. Martin Luther University Halle-Wittenberg, Institute for Informatics, Databases and Information Systems. Hrsg.: Alexander Hinneburg
  7. Studer, R.; Studer, H.-P.; Studer, A.: Semantisches Knowledge Retrieval (2001) 0.01
    0.0066395523 = product of:
      0.046476863 = sum of:
        0.0100241685 = weight(_text_:information in 4322) [ClassicSimilarity], result of:
          0.0100241685 = score(doc=4322,freq=8.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.23274569 = fieldWeight in 4322, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4322)
        0.036452696 = weight(_text_:retrieval in 4322) [ClassicSimilarity], result of:
          0.036452696 = score(doc=4322,freq=12.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.49118498 = fieldWeight in 4322, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=4322)
      0.14285715 = coord(2/14)
    
    Abstract
    Dieses Whitepaper befasst sich mit der Integration semantischer Technologien in bestehende Ansätze des Information Retrieval und die damit verbundenen weitreichenden Auswirkungen auf Effizienz und Effektivität von Suche und Navigation in Dokumenten. Nach einer Einbettung in die Problematik des Wissensmanagement aus Sicht der Informationstechnik folgt ein Überblick zu den Methoden des Information Retrieval. Anschließend werden die semantischen Technologien "Wissen modellieren - Ontologie" und "Neues Wissen ableiten - Inferenz" vorgestellt. Ein Integrationsansatz wird im Folgenden diskutiert und die entstehenden Mehrwerte präsentiert. Insbesondere ergeben sich Erweiterungen hinsichtlich einer verfeinerten Suchunterstützung und einer kontextbezogenen Navigation sowie die Möglichkeiten der Auswertung von regelbasierten Zusammenhängen und einfache Integration von strukturierten Informationsquellen. Das Whitepaper schließt mit einem Ausblick auf die zukünftige Entwicklung des WWW hin zu einem Semantic Web und die damit verbundenen Implikationen für semantische Technologien.
    Content
    Inhalt: 1. Einführung - 2. Wissensmanagement - 3. Information Retrieval - 3.1. Methoden und Techniken - 3.2. Information Retrieval in der Anwendung - 4. Semantische Ansätze - 4.1. Wissen modellieren - Ontologie - 4.2. Neues Wissen inferieren - 5. Knowledge Retrieval in der Anwendung - 6. Zukunftsaussichten - 7. Fazit
  8. Eckert, K.: SKOS: eine Sprache für die Übertragung von Thesauri ins Semantic Web (2011) 0.01
    0.0062453663 = product of:
      0.043717563 = sum of:
        0.030421399 = weight(_text_:system in 4331) [ClassicSimilarity], result of:
          0.030421399 = score(doc=4331,freq=4.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.3936941 = fieldWeight in 4331, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0625 = fieldNorm(doc=4331)
        0.0132961655 = product of:
          0.026592331 = sum of:
            0.026592331 = weight(_text_:22 in 4331) [ClassicSimilarity], result of:
              0.026592331 = score(doc=4331,freq=2.0), product of:
                0.085914485 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02453417 = queryNorm
                0.30952093 = fieldWeight in 4331, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4331)
          0.5 = coord(1/2)
      0.14285715 = coord(2/14)
    
    Abstract
    Das Semantic Web - bzw. Linked Data - hat das Potenzial, die Verfügbarkeit von Daten und Wissen, sowie den Zugriff darauf zu revolutionieren. Einen großen Beitrag dazu können Wissensorganisationssysteme wie Thesauri leisten, die die Daten inhaltlich erschließen und strukturieren. Leider sind immer noch viele dieser Systeme lediglich in Buchform oder in speziellen Anwendungen verfügbar. Wie also lassen sie sich für das Semantic Web nutzen? Das Simple Knowledge Organization System (SKOS) bietet eine Möglichkeit, die Wissensorganisationssysteme in eine Form zu "übersetzen", die im Web zitiert und mit anderen Resourcen verknüpft werden kann.
    Date
    15. 3.2011 19:21:22
    Source
    http://metadaten-twr.org/2011/01/19/skos-simple-knowledge-organisation-system/
  9. Sánchez, M.F.: Semantically enhanced Information Retrieval : an ontology-based approach (2006) 0.01
    0.0062043 = product of:
      0.043430097 = sum of:
        0.008353474 = weight(_text_:information in 4327) [ClassicSimilarity], result of:
          0.008353474 = score(doc=4327,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.19395474 = fieldWeight in 4327, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=4327)
        0.035076622 = weight(_text_:retrieval in 4327) [ClassicSimilarity], result of:
          0.035076622 = score(doc=4327,freq=4.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.47264296 = fieldWeight in 4327, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.078125 = fieldNorm(doc=4327)
      0.14285715 = coord(2/14)
    
    Content
    Part I. Analyzing the state of the art - What is semantic search? Part II. The proposal - An ontology-based IR model - Semantic retrieval on the Web Part III. Extensions - Semantic knowledge gateway - Coping with knowledge incompleteness
  10. Mehler, A.; Waltinger, U.: Automatic enrichment of metadata (2009) 0.01
    0.0059076445 = product of:
      0.04135351 = sum of:
        0.021511177 = weight(_text_:system in 4840) [ClassicSimilarity], result of:
          0.021511177 = score(doc=4840,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.27838376 = fieldWeight in 4840, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0625 = fieldNorm(doc=4840)
        0.019842334 = weight(_text_:retrieval in 4840) [ClassicSimilarity], result of:
          0.019842334 = score(doc=4840,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.26736724 = fieldWeight in 4840, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=4840)
      0.14285715 = coord(2/14)
    
    Abstract
    In this talk we present a retrieval model based on social ontologies. More specifically, we utilize the Wikipedia category system in order to perform semantic searches. That is, textual input is used to build queries by means of which documents are retrieved which do not necessarily contain any query term but are semantically related to the input text by virtue of their content. We present a desktop which utilizes this search facility in a web-based environment - the so called eHumanities Desktop.
  11. Mirizzi, R.: Exploratory browsing in the Web of Data (2011) 0.01
    0.0059004403 = product of:
      0.027535388 = sum of:
        0.009411139 = weight(_text_:system in 4803) [ClassicSimilarity], result of:
          0.009411139 = score(doc=4803,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.1217929 = fieldWeight in 4803, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4803)
        0.0058474317 = weight(_text_:information in 4803) [ClassicSimilarity], result of:
          0.0058474317 = score(doc=4803,freq=8.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.13576832 = fieldWeight in 4803, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4803)
        0.012276817 = weight(_text_:retrieval in 4803) [ClassicSimilarity], result of:
          0.012276817 = score(doc=4803,freq=4.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.16542503 = fieldWeight in 4803, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4803)
      0.21428572 = coord(3/14)
    
    Abstract
    Thanks to the recent Linked Data initiative, the foundations of the Semantic Web have been built. Shared, open and linked RDF datasets give us the possibility to exploit both the strong theoretical results and the robust technologies and tools developed since the seminal paper in the Semantic Web appeared in 2001. In a simplistic way, we may think at the Semantic Web as a ultra large distributed database we can query to get information coming from different sources. In fact, every dataset exposes a SPARQL endpoint to make the data accessible through exact queries. If we know the URI of the famous actress Nicole Kidman in DBpedia we may retrieve all the movies she acted with a simple SPARQL query. Eventually we may aggregate this information with users ratings and genres from IMDB. Even though these are very exciting results and applications, there is much more behind the curtains. Datasets come with the description of their schema structured in an ontological way. Resources refer to classes which are in turn organized in well structured and rich ontologies. Exploiting also this further feature we go beyond the notion of a distributed database and we can refer to the Semantic Web as a distributed knowledge base. If in our knowledge base we have that Paris is located in France (ontological level) and that Moulin Rouge! is set in Paris (data level) we may query the Semantic Web (interpreted as a set of interconnected datasets and related ontologies) to return all the movies starred by Nicole Kidman set in France and Moulin Rouge! will be in the final result set. The ontological level makes possible to infer new relations among data.
    The Linked Data initiative and the state of the art in semantic technologies led off all brand new search and mash-up applications. The basic idea is to have smarter lookup services for a huge, distributed and social knowledge base. All these applications catch and (re)propose, under a semantic data perspective, the view of the classical Web as a distributed collection of documents to retrieve. The interlinked nature of the Web, and consequently of the Semantic Web, is exploited (just) to collect and aggregate data coming from different sources. Of course, this is a big step forward in search and Web technologies, but if we limit our investi- gation to retrieval tasks, we miss another important feature of the current Web: browsing and in particular exploratory browsing (a.k.a. exploratory search). Thanks to its hyperlinked nature, the Web defined a new way of browsing documents and knowledge: selection by lookup, navigation and trial-and-error tactics were, and still are, exploited by users to search for relevant information satisfying some initial requirements. The basic assumptions behind a lookup search, typical of Information Retrieval (IR) systems, are no more valid in an exploratory browsing context. An IR system, such as a search engine, assumes that: the user has a clear picture of what she is looking for ; she knows the terminology of the specific knowledge space. On the other side, as argued in, the main challenges in exploratory search can be summarized as: support querying and rapid query refinement; other facets and metadata-based result filtering; leverage search context; support learning and understanding; other visualization to support insight/decision making; facilitate collaboration. In Section 3 we will show two applications for exploratory search in the Semantic Web addressing some of the above challenges.
  12. Shah, U.; Finin, T.; Joshi, A.; Cost, R.S.; Mayfield, J.: Information retrieval on the Semantic Web (2002) 0.01
    0.005742856 = product of:
      0.040199988 = sum of:
        0.010128049 = weight(_text_:information in 696) [ClassicSimilarity], result of:
          0.010128049 = score(doc=696,freq=6.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.23515764 = fieldWeight in 696, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=696)
        0.03007194 = weight(_text_:retrieval in 696) [ClassicSimilarity], result of:
          0.03007194 = score(doc=696,freq=6.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.40520695 = fieldWeight in 696, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=696)
      0.14285715 = coord(2/14)
    
    Abstract
    We describe an apporach to retrieval of documents that consist of both free text and semantically enriched markup. In particular, we present the design and implementation prototype of a framework in which both documents and queries can be marked up with statements in the DAML+OIL semantic web language. These statement provide both structured and semi-structured information about the documents and their content. We claim that indexing text and semantic markup will significantly improve retrieval performance. Outr approach allows inferencing to be done over this information at several points: when a document is indexed,when a query is processed and when query results are evaluated.
  13. SKOS Simple Knowledge Organization System Reference : W3C Recommendation 18 August 2009 (2009) 0.00
    0.0047079893 = product of:
      0.032955922 = sum of:
        0.027943838 = weight(_text_:system in 4688) [ClassicSimilarity], result of:
          0.027943838 = score(doc=4688,freq=6.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.36163113 = fieldWeight in 4688, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=4688)
        0.0050120843 = weight(_text_:information in 4688) [ClassicSimilarity], result of:
          0.0050120843 = score(doc=4688,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.116372846 = fieldWeight in 4688, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4688)
      0.14285715 = coord(2/14)
    
    Abstract
    This document defines the Simple Knowledge Organization System (SKOS), a common data model for sharing and linking knowledge organization systems via the Web. Many knowledge organization systems, such as thesauri, taxonomies, classification schemes and subject heading systems, share a similar structure, and are used in similar applications. SKOS captures much of this similarity and makes it explicit, to enable data and technology sharing across diverse applications. The SKOS data model provides a standard, low-cost migration path for porting existing knowledge organization systems to the Semantic Web. SKOS also provides a lightweight, intuitive language for developing and sharing new knowledge organization systems. It may be used on its own, or in combination with formal knowledge representation languages such as the Web Ontology language (OWL). This document is the normative specification of the Simple Knowledge Organization System. It is intended for readers who are involved in the design and implementation of information systems, and who already have a good understanding of Semantic Web technology, especially RDF and OWL. For an informative guide to using SKOS, see the [SKOS-PRIMER].
  14. Miles, A.: SKOS: requirements for standardization (2006) 0.00
    0.0044307336 = product of:
      0.031015133 = sum of:
        0.016133383 = weight(_text_:system in 5703) [ClassicSimilarity], result of:
          0.016133383 = score(doc=5703,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.20878783 = fieldWeight in 5703, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=5703)
        0.014881751 = weight(_text_:retrieval in 5703) [ClassicSimilarity], result of:
          0.014881751 = score(doc=5703,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.20052543 = fieldWeight in 5703, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=5703)
      0.14285715 = coord(2/14)
    
    Abstract
    This paper poses three questions regarding the planned development of the Simple Knowledge Organisation System (SKOS) towards W3C Recommendation status. Firstly, what is the fundamental purpose and therefore scope of SKOS? Secondly, which key software components depend on SKOS, and how do they interact? Thirdly, what is the wider technological and social context in which SKOS is likely to be applied and how might this influence design goals? Some tentative conclusions are drawn and in particular it is suggested that the scope of SKOS be restricted to the formal representation of controlled structured vocabularies intended for use within retrieval applications. However, the main purpose of this paper is to articulate the assumptions that have motivated the design of SKOS, so that these may be reviewed prior to a rigorous standardization initiative.
  15. Davies, J.; Weeks, R.: QuizRDF: search technology for the Semantic Web (2004) 0.00
    0.004360122 = product of:
      0.030520853 = sum of:
        0.02328653 = weight(_text_:system in 4320) [ClassicSimilarity], result of:
          0.02328653 = score(doc=4320,freq=6.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.30135927 = fieldWeight in 4320, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4320)
        0.0072343214 = weight(_text_:information in 4320) [ClassicSimilarity], result of:
          0.0072343214 = score(doc=4320,freq=6.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.16796975 = fieldWeight in 4320, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4320)
      0.14285715 = coord(2/14)
    
    Abstract
    An information-seeking system is described which combines traditional keyword querying of WWW resources with the ability to browse and query against RD annotations of those resources. RDF(S) and RDF are used to specify and populate an ontology and the resultant RDF annotations are then indexed along with the full text of the annotated resources. The resultant index allows both keyword querying against the full text of the document and the literal values occurring in the RDF annotations, along with the ability to browse and query the ontology. We motivate our approach as a key enabler for fully exploiting the Semantic Web in the area of knowledge management and argue that the ability to combine searching and browsing behaviours more fully supports a typical information-seeking task. The approach is characterised as "low threshold, high ceiling" in the sense that where RDF annotations exist they are exploited for an improved information-seeking experience but where they do not yet exist, a search capability is still available.
    Source
    Hawaii International Conference on System Sciences: Proceedings of the 37th Annual Hawaii International Conference on System Sciences (HICSS'04) - Track 4, Big Island, Hawaii, January 05-January 08, 2004
  16. Hüsken, P.: Information Retrieval im Semantic Web (2006) 0.00
    0.0040191617 = product of:
      0.02813413 = sum of:
        0.0070881573 = weight(_text_:information in 4333) [ClassicSimilarity], result of:
          0.0070881573 = score(doc=4333,freq=4.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.16457605 = fieldWeight in 4333, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4333)
        0.021045974 = weight(_text_:retrieval in 4333) [ClassicSimilarity], result of:
          0.021045974 = score(doc=4333,freq=4.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.2835858 = fieldWeight in 4333, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=4333)
      0.14285715 = coord(2/14)
    
    Abstract
    Das Semantic Web bezeichnet ein erweitertes World Wide Web (WWW), das die Bedeutung von präsentierten Inhalten in neuen standardisierten Sprachen wie RDF Schema und OWL modelliert. Diese Arbeit befasst sich mit dem Aspekt des Information Retrieval, d.h. es wird untersucht, in wie weit Methoden der Informationssuche sich auf modelliertes Wissen übertragen lassen. Die kennzeichnenden Merkmale von IR-Systemen wie vage Anfragen sowie die Unterstützung unsicheren Wissens werden im Kontext des Semantic Web behandelt. Im Fokus steht die Suche nach Fakten innerhalb einer Wissensdomäne, die entweder explizit modelliert sind oder implizit durch die Anwendung von Inferenz abgeleitet werden können. Aufbauend auf der an der Universität Duisburg-Essen entwickelten Retrievalmaschine PIRE wird die Anwendung unsicherer Inferenz mit probabilistischer Prädikatenlogik (pDatalog) implementiert.
  17. Vocht, L. De: Exploring semantic relationships in the Web of Data : Semantische relaties verkennen in data op het web (2017) 0.00
    0.0039532017 = product of:
      0.018448275 = sum of:
        0.0067222426 = weight(_text_:system in 4232) [ClassicSimilarity], result of:
          0.0067222426 = score(doc=4232,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.08699492 = fieldWeight in 4232, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.01953125 = fieldNorm(doc=4232)
        0.0055253035 = weight(_text_:information in 4232) [ClassicSimilarity], result of:
          0.0055253035 = score(doc=4232,freq=14.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.128289 = fieldWeight in 4232, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.01953125 = fieldNorm(doc=4232)
        0.0062007294 = weight(_text_:retrieval in 4232) [ClassicSimilarity], result of:
          0.0062007294 = score(doc=4232,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.08355226 = fieldWeight in 4232, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.01953125 = fieldNorm(doc=4232)
      0.21428572 = coord(3/14)
    
    Abstract
    After the launch of the World Wide Web, it became clear that searching documentson the Web would not be trivial. Well-known engines to search the web, like Google, focus on search in web documents using keywords. The documents are structured and indexed to ensure keywords match documents as accurately as possible. However, searching by keywords does not always suice. It is oen the case that users do not know exactly how to formulate the search query or which keywords guarantee retrieving the most relevant documents. Besides that, it occurs that users rather want to browse information than looking up something specific. It turned out that there is need for systems that enable more interactivity and facilitate the gradual refinement of search queries to explore the Web. Users expect more from the Web because the short keyword-based queries they pose during search, do not suffice for all cases. On top of that, the Web is changing structurally. The Web comprises, apart from a collection of documents, more and more linked data, pieces of information structured so they can be processed by machines. The consequently applied semantics allow users to exactly indicate machines their search intentions. This is made possible by describing data following controlled vocabularies, concept lists composed by experts, published uniquely identifiable on the Web. Even so, it is still not trivial to explore data on the Web. There is a large variety of vocabularies and various data sources use different terms to identify the same concepts.
    This PhD-thesis describes how to effectively explore linked data on the Web. The main focus is on scenarios where users want to discover relationships between resources rather than finding out more about something specific. Searching for a specific document or piece of information fits in the theoretical framework of information retrieval and is associated with exploratory search. Exploratory search goes beyond 'looking up something' when users are seeking more detailed understanding, further investigation or navigation of the initial search results. The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. Queries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research. Our first technique focuses on the interactive visualization of search results. Linked data resources can be brought in relation with each other at will. This leads to complex and diverse graphs structures. Our technique facilitates navigation and supports a workflow starting from a broad overview on the data and allows narrowing down until the desired level of detail to then broaden again. To validate the flow, two visualizations where implemented and presented to test-users. The users judged the usability of the visualizations, how the visualizations fit in the workflow and to which degree their features seemed useful for the exploration of linked data.
    The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. eries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research.
    When we speak about finding relationships between resources, it is necessary to dive deeper in the structure. The graph structure of linked data where the semantics give meaning to the relationships between resources enable the execution of pathfinding algorithms. The assigned weights and heuristics are base components of such algorithms and ultimately define (the order) which resources are included in a path. These paths explain indirect connections between resources. Our third technique proposes an algorithm that optimizes the choice of resources in terms of serendipity. Some optimizations guard the consistence of candidate-paths where the coherence of consecutive connections is maximized to avoid trivial and too arbitrary paths. The implementation uses the A* algorithm, the de-facto reference when it comes to heuristically optimized minimal cost paths. The effectiveness of paths was measured based on common automatic metrics and surveys where the users could indicate their preference for paths, generated each time in a different way. Finally, all our techniques are applied to a use case about publications in digital libraries where they are aligned with information about scientific conferences and researchers. The application to this use case is a practical example because the different aspects of exploratory search come together. In fact, the techniques also evolved from the experiences when implementing the use case. Practical details about the semantic model are explained and the implementation of the search system is clarified module by module. The evaluation positions the result, a prototype of a tool to explore scientific publications, researchers and conferences next to some important alternatives.
  18. Li, Z.: ¬A domain specific search engine with explicit document relations (2013) 0.00
    0.0035600248 = product of:
      0.024920173 = sum of:
        0.019013375 = weight(_text_:system in 1210) [ClassicSimilarity], result of:
          0.019013375 = score(doc=1210,freq=4.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.24605882 = fieldWeight in 1210, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1210)
        0.005906798 = weight(_text_:information in 1210) [ClassicSimilarity], result of:
          0.005906798 = score(doc=1210,freq=4.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.13714671 = fieldWeight in 1210, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1210)
      0.14285715 = coord(2/14)
    
    Abstract
    The current web consists of documents that are highly heterogeneous and hard for machines to understand. The Semantic Web is a progressive movement of the Word Wide Web, aiming at converting the current web of unstructured documents to the web of data. In the Semantic Web, web documents are annotated with metadata using standardized ontology language. These annotated documents are directly processable by machines and it highly improves their usability and usefulness. In Ericsson, similar problems occur. There are massive documents being created with well-defined structures. Though these documents are about domain specific knowledge and can have rich relations, they are currently managed by a traditional search engine, which ignores the rich domain specific information and presents few data to users. Motivated by the Semantic Web, we aim to find standard ways to process these documents, extract rich domain specific information and annotate these data to documents with formal markup languages. We propose this project to develop a domain specific search engine for processing different documents and building explicit relations for them. This research project consists of the three main focuses: examining different domain specific documents and finding ways to extract their metadata; integrating a text search engine with an ontology server; exploring novel ways to build relations for documents. We implement this system and demonstrate its functions. As a prototype, the system provides required features and will be extended in the future.
  19. Davies, J.; Weeks, R.; Krohn, U.: QuizRDF: search technology for the Semantic Web (2004) 0.00
    0.0035449385 = product of:
      0.024814568 = sum of:
        0.016133383 = weight(_text_:system in 4316) [ClassicSimilarity], result of:
          0.016133383 = score(doc=4316,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.20878783 = fieldWeight in 4316, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=4316)
        0.008681185 = weight(_text_:information in 4316) [ClassicSimilarity], result of:
          0.008681185 = score(doc=4316,freq=6.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.20156369 = fieldWeight in 4316, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4316)
      0.14285715 = coord(2/14)
    
    Abstract
    An information-seeking system is described which combines traditional keyword querying of WWW resources with the ability to browse and query against RDF annotations of those resources. RDF(S) and RDF are used to specify and populate an ontology and the resultant RDF annotations are then indexed along with the full text of the annotated resources. The resultant index allows both keyword querying against the full text of the document and the literal values occurring in the RDF annotations, along with the ability to browse and query the ontology. We motivate our approach as a key enabler for fully exploiting the Semantic Web in the area of knowledge management and argue that the ability to combine searching and browsing behaviours more fully supports a typical information-seeking task. The approach is characterised as "low threshold, high ceiling" in the sense that where RDF annotations exist they are exploited for an improved information-seeking experience but where they do not yet exist, a search capability is still available.
  20. Zhang, L.; Liu, Q.L.; Zhang, J.; Wang, H.F.; Pan, Y.; Yu, Y.: Semplore: an IR approach to scalable hybrid query of Semantic Web data (2007) 0.00
    0.0033502954 = product of:
      0.023452066 = sum of:
        0.011050607 = weight(_text_:information in 231) [ClassicSimilarity], result of:
          0.011050607 = score(doc=231,freq=14.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.256578 = fieldWeight in 231, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=231)
        0.012401459 = weight(_text_:retrieval in 231) [ClassicSimilarity], result of:
          0.012401459 = score(doc=231,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.16710453 = fieldWeight in 231, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=231)
      0.14285715 = coord(2/14)
    
    Abstract
    As an extension to the current Web, Semantic Web will not only contain structured data with machine understandable semantics but also textual information. While structured queries can be used to find information more precisely on the Semantic Web, keyword searches are still needed to help exploit textual information. It thus becomes very important that we can combine precise structured queries with imprecise keyword searches to have a hybrid query capability. In addition, due to the huge volume of information on the Semantic Web, the hybrid query must be processed in a very scalable way. In this paper, we define such a hybrid query capability that combines unary tree-shaped structured queries with keyword searches. We show how existing information retrieval (IR) index structures and functions can be reused to index semantic web data and its textual information, and how the hybrid query is evaluated on the index structure using IR engines in an efficient and scalable manner. We implemented this IR approach in an engine called Semplore. Comprehensive experiments on its performance show that it is a promising approach. It leads us to believe that it may be possible to evolve current web search engines to query and search the Semantic Web. Finally, we briefy describe how Semplore is used for searching Wikipedia and an IBM customer's product information.

Years

Languages

  • e 56
  • d 7
  • f 1
  • More… Less…

Types

  • a 22
  • n 6
  • x 4
  • r 1
  • More… Less…