Search (168 results, page 9 of 9)

  • × theme_ss:"Semantic Web"
  • × year_i:[2000 TO 2010}
  1. Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak, R.; Ives, Z.: DBpedia: a nucleus for a Web of open data (2007) 0.00
    8.011634E-4 = product of:
      0.0056081433 = sum of:
        0.0056081433 = weight(_text_:in in 4260) [ClassicSimilarity], result of:
          0.0056081433 = score(doc=4260,freq=2.0), product of:
            0.062193166 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.045721713 = queryNorm
            0.09017298 = fieldWeight in 4260, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=4260)
      0.14285715 = coord(1/7)
    
    Series
    Lecture notes in computer science ; 4825
  2. Devedzic, V.: Semantic Web and education (2006) 0.00
    8.011634E-4 = product of:
      0.0056081433 = sum of:
        0.0056081433 = weight(_text_:in in 5995) [ClassicSimilarity], result of:
          0.0056081433 = score(doc=5995,freq=2.0), product of:
            0.062193166 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.045721713 = queryNorm
            0.09017298 = fieldWeight in 5995, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=5995)
      0.14285715 = coord(1/7)
    
    Abstract
    The first section of "Semantic Web and Education" surveys the basic aspects and features of the Semantic Web. After this basic review, the book turns its focus to its primary topic of how Semantic Web developments can be used to build attractive and more successful education applications. The book analytically discusses the technical areas of architecture, metadata, learning objects, software engineering trends, and more. Integrated with these technical topics are the examinations of learning-oriented topics such as learner modeling, collaborative learning, learning management, learning communities, ontological engineering of web-based learning, and related topics. The result is a thorough and highly useful presentation on the confluence of the technical aspects of the Semantic Web and the field of Education or the art of teaching. The book will be of considerable interest to researchers and students in the fields Information Systems, Computer Science, and Education.
  3. Suchanek, F.M.; Kasneci, G.; Weikum, G.: YAGO: a large ontology from Wikipedia and WordNet (2008) 0.00
    8.011634E-4 = product of:
      0.0056081433 = sum of:
        0.0056081433 = weight(_text_:in in 3404) [ClassicSimilarity], result of:
          0.0056081433 = score(doc=3404,freq=2.0), product of:
            0.062193166 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.045721713 = queryNorm
            0.09017298 = fieldWeight in 3404, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=3404)
      0.14285715 = coord(1/7)
    
    Abstract
    This article presents YAGO, a large ontology with high coverage and precision. YAGO has been automatically derived from Wikipedia and WordNet. It comprises entities and relations, and currently contains more than 1.7 million entities and 15 million facts. These include the taxonomic Is-A hierarchy as well as semantic relations between entities. The facts for YAGO have been extracted from the category system and the infoboxes of Wikipedia and have been combined with taxonomic relations from WordNet. Type checking techniques help us keep YAGO's precision at 95%-as proven by an extensive evaluation study. YAGO is based on a clean logical model with a decidable consistency. Furthermore, it allows representing n-ary relations in a natural way while maintaining compatibility with RDFS. A powerful query model facilitates access to YAGO's data.
  4. Fluit, C.; Horst, H. ter; Meer, J. van der; Sabou, M.; Mika, P.: Spectacle (2004) 0.00
    8.011634E-4 = product of:
      0.0056081433 = sum of:
        0.0056081433 = weight(_text_:in in 4337) [ClassicSimilarity], result of:
          0.0056081433 = score(doc=4337,freq=2.0), product of:
            0.062193166 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.045721713 = queryNorm
            0.09017298 = fieldWeight in 4337, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=4337)
      0.14285715 = coord(1/7)
    
    Abstract
    Many Semantic Web initiatives improve the capabilities of machines to exchange the meaning of information with other machines. These efforts lead to an increased quality of the application's results, but their user interfaces take little or no advantage of the semantic richness. For example, an ontology-based search engine will use its ontology when evaluating the user's query (e.g. for query formulation, disambiguation or evaluation), but fails to use it to significantly enrich the presentation of the results to a human user. For example, one could imagine replacing the endless list of hits with a structured presentation based on the semantic properties of the hits. Another problem is that the modelling of a domain is done from a single perspective (most often that of the information provider). Therefore, presentation based on the resulting ontology is unlikely to satisfy the needs of all the different types of users of the information. So even assuming an ontology for the domain is in place, mapping that ontology to the needs of individual users - based on their tasks, expertise and personal preferences - is not trivial.
  5. OWL Web Ontology Language Overview (2004) 0.00
    8.011634E-4 = product of:
      0.0056081433 = sum of:
        0.0056081433 = weight(_text_:in in 4682) [ClassicSimilarity], result of:
          0.0056081433 = score(doc=4682,freq=2.0), product of:
            0.062193166 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.045721713 = queryNorm
            0.09017298 = fieldWeight in 4682, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=4682)
      0.14285715 = coord(1/7)
    
    Abstract
    The OWL Web Ontology Language is designed for use by applications that need to process the content of information instead of just presenting information to humans. OWL facilitates greater machine interpretability of Web content than that supported by XML, RDF, and RDF Schema (RDF-S) by providing additional vocabulary along with a formal semantics. OWL has three increasingly-expressive sublanguages: OWL Lite, OWL DL, and OWL Full. This document is written for readers who want a first impression of the capabilities of OWL. It provides an introduction to OWL by informally describing the features of each of the sublanguages of OWL. Some knowledge of RDF Schema is useful for understanding this document, but not essential. After this document, interested readers may turn to the OWL Guide for more detailed descriptions and extensive examples on the features of OWL. The normative formal definition of OWL can be found in the OWL Semantics and Abstract Syntax.
  6. Ding, L.; Finin, T.; Joshi, A.; Peng, Y.; Cost, R.S.; Sachs, J.; Pan, R.; Reddivari, P.; Doshi, V.: Swoogle : a Semantic Web search and metadata engine (2004) 0.00
    8.011634E-4 = product of:
      0.0056081433 = sum of:
        0.0056081433 = weight(_text_:in in 4704) [ClassicSimilarity], result of:
          0.0056081433 = score(doc=4704,freq=2.0), product of:
            0.062193166 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.045721713 = queryNorm
            0.09017298 = fieldWeight in 4704, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=4704)
      0.14285715 = coord(1/7)
    
    Abstract
    Swoogle is a crawler-based indexing and retrieval system for the Semantic Web, i.e., for Web documents in RDF or OWL. It extracts metadata for each discovered document, and computes relations between documents. Discovered documents are also indexed by an information retrieval system which can use either character N-Gram or URIrefs as keywords to find relevant documents and to compute the similarity among a set of documents. One of the interesting properties we compute is rank, a measure of the importance of a Semantic Web document.
  7. Proceedings of the 2nd International Workshop on Evaluation of Ontology-based Tools (2004) 0.00
    6.6763617E-4 = product of:
      0.004673453 = sum of:
        0.004673453 = weight(_text_:in in 3152) [ClassicSimilarity], result of:
          0.004673453 = score(doc=3152,freq=2.0), product of:
            0.062193166 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.045721713 = queryNorm
            0.07514416 = fieldWeight in 3152, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3152)
      0.14285715 = coord(1/7)
    
    Content
    Table of Contents Part I: Accepted Papers Christoph Tempich and Raphael Volz: Towards a benchmark for Semantic Web reasoners - an analysis of the DAML ontology library M. Carmen Suarez-Figueroa and Asuncion Gomez-Perez: Results of Taxonomic Evaluation of RDF(S) and DAML+OIL ontologies using RDF(S) and DAML+OIL Validation Tools and Ontology Platforms import services Volker Haarslev and Ralf Möller: Racer: A Core Inference Engine for the Semantic Web Mikhail Kazakov and Habib Abdulrab: DL-workbench: a metamodeling approach to ontology manipulation Thorsten Liebig and Olaf Noppens: OntoTrack: Fast Browsing and Easy Editing of Large Ontologie Frederic Fürst, Michel Leclere, and Francky Trichet: TooCoM : a Tool to Operationalize an Ontology with the Conceptual Graph Model Naoki Sugiura, Masaki Kurematsu, Naoki Fukuta, Noriaki Izumi, and Takahira Yamaguchi: A domain ontology engineering tool with general ontologies and text corpus Howard Goldberg, Alfredo Morales, David MacMillan, and Matthew Quinlan: An Ontology-Driven Application to Improve the Prescription of Educational Resources to Parents of Premature Infants Part II: Experiment Contributions Domain natural language description for the experiment Raphael Troncy, Antoine Isaac, and Veronique Malaise: Using XSLT for Interoperability: DOE and The Travelling Domain Experiment Christian Fillies: SemTalk EON2003 Semantic Web Export / Import Interface Test Óscar Corcho, Asunción Gómez-Pérez, Danilo José Guerrero-Rodríguez, David Pérez-Rey, Alberto Ruiz-Cristina, Teresa Sastre-Toral, M. Carmen Suárez-Figueroa: Evaluation experiment of ontology tools' interoperability with the WebODE ontology engineering workbench Holger Knublauch: Case Study: Using Protege to Convert the Travel Ontology to UML and OWL Franz Calvo and John Gennari: Interoperability of Protege 2.0 beta and OilEd 3.5 in the Domain Knowledge of Osteoporosis
  8. Spinning the Semantic Web : bringing the World Wide Web to its full potential (2003) 0.00
    6.6092616E-4 = product of:
      0.0046264827 = sum of:
        0.0046264827 = weight(_text_:in in 1981) [ClassicSimilarity], result of:
          0.0046264827 = score(doc=1981,freq=4.0), product of:
            0.062193166 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.045721713 = queryNorm
            0.07438892 = fieldWeight in 1981, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1981)
      0.14285715 = coord(1/7)
    
    Abstract
    As the World Wide Web continues to expand, it becomes increasingly difficult for users to obtain information efficiently. Because most search engines read format languages such as HTML or SGML, search results reflect formatting tags more than actual page content, which is expressed in natural language. Spinning the Semantic Web describes an exciting new type of hierarchy and standardization that will replace the current "Web of links" with a "Web of meaning." Using a flexible set of languages and tools, the Semantic Web will make all available information - display elements, metadata, services, images, and especially content - accessible. The result will be an immense repository of information accessible for a wide range of new applications. This first handbook for the Semantic Web covers, among other topics, software agents that can negotiate and collect information, markup languages that can tag many more types of information in a document, and knowledge systems that enable machines to read Web pages and determine their reliability. The truly interdisciplinary Semantic Web combines aspects of artificial intelligence, markup languages, natural language processing, information retrieval, knowledge representation, intelligent agents, and databases.

Languages

  • e 113
  • d 54

Types

  • a 106
  • el 48
  • m 16
  • s 8
  • n 7
  • x 6
  • r 3
  • More… Less…

Subjects

Classifications