Search (8 results, page 1 of 1)

  • × theme_ss:"Semantische Interoperabilität"
  • × theme_ss:"Wissensrepräsentation"
  • × year_i:[2000 TO 2010}
  1. Burstein, M.; McDermott, D.V.: Ontology translation for interoperability among Semantic Web services (2005) 0.00
    0.0023543455 = product of:
      0.02118911 = sum of:
        0.02118911 = product of:
          0.04237822 = sum of:
            0.04237822 = weight(_text_:web in 2661) [ClassicSimilarity], result of:
              0.04237822 = score(doc=2661,freq=12.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.4416067 = fieldWeight in 2661, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2661)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Research on semantic web services promises greater interoperability among software agents and web services by enabling content-based automated service discovery and interaction and by utilizing. Although this is to be based on use of shared ontologies published on the semantic web, services produced and described by different developers may well use different, perhaps partly overlapping, sets of ontologies. Interoperability will depend on ontology mappings and architectures supporting the associated translation processes. The question we ask is, does the traditional approach of introducing mediator agents to translate messages between requestors and services work in such an open environment? This article reviews some of the processing assumptions that were made in the development of the semantic web service modeling ontology OWL-S and argues that, as a practical matter, the translation function cannot always be isolated in mediators. Ontology mappings need to be published on the semantic web just as ontologies themselves are. The translation for service discovery, service process model interpretation, task negotiation, service invocation, and response interpretation may then be distributed to various places in the architecture so that translation can be done in the specific goal-oriented informational contexts of the agents performing these processes. We present arguments for assigning translation responsibility to particular agents in the cases of service invocation, response translation, and match- making.
  2. Koutsomitropoulos, D.A.; Solomou, G.D.; Alexopoulos, A.D.; Papatheodorou, T.S.: Semantic metadata interoperability and inference-based querying in digital repositories (2009) 0.00
    0.0019977288 = product of:
      0.017979559 = sum of:
        0.017979559 = product of:
          0.035959117 = sum of:
            0.035959117 = weight(_text_:web in 3731) [ClassicSimilarity], result of:
              0.035959117 = score(doc=3731,freq=6.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.37471575 = fieldWeight in 3731, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3731)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Metadata applications have evolved in time into highly structured "islands of information" about digital resources, often bearing a strong semantic interpretation. Scarcely however are these semantics being communicated in machine readable and understandable ways. At the same time, the process for transforming the implied metadata knowledge into explicit Semantic Web descriptions can be problematic and is not always evident. In this article we take upon the well-established Dublin Core metadata standard as well as other metadata schemata, which often appear in digital repositories set-ups, and suggest a proper Semantic Web OWL ontology. In this process the authors cope with discrepancies and incompatibilities, indicative of such attempts, in novel ways. Moreover, we show the potential and necessity of this approach by demonstrating inferences on the resulting ontology, instantiated with actual metadata records. The authors conclude by presenting a working prototype that provides for inference-based querying on top of digital repositories.
    Theme
    Semantic Web
  3. Sigel, A.: Wissensorganisation, Topic Maps und Ontology Engineering : Die Verbindung bewährter Begriffsstrukturen mit aktueller XML Technologie (2004) 0.00
    0.0013592821 = product of:
      0.012233539 = sum of:
        0.012233539 = product of:
          0.024467077 = sum of:
            0.024467077 = weight(_text_:web in 3236) [ClassicSimilarity], result of:
              0.024467077 = score(doc=3236,freq=4.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.25496176 = fieldWeight in 3236, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3236)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Wie können begriffliche Strukturen an Topic Maps angebunden werden? Allgemeiner. Wie kann die Wissensorganisation dazu beitragen, dass im Semantic Web eine begriffsbasierte Infrastruktur verfügbar ist? Dieser Frage hat sich die Wissensorganisation bislang noch nicht wirklich angenommen. Insgesamt ist die Berührung zwischen semantischen Wissenstechnologien und wissensorganisatorischen Fragestellungen noch sehr gering, obwohl Begriffsstrukturen, Ontologien und Topic Maps grundsätzlich gut zusammenpassen und ihre gemeinsame Betrachtung Erkenntnisse für zentrale wissensorganisatorische Fragestellungen wie z.B. semantische Interoperabilität und semantisches Retrieval erwarten lässt. Daher motiviert und skizziert dieser Beitrag die Grundidee, nach der es möglich sein müsste, eine Sprache zur Darstellung von Begriffsstrukturen in der Wissensorganisation geeignet mit Topic Maps zu verbinden. Eine genauere Untersuchung und Implementation stehen allerdings weiterhin aus. Speziell wird vermutet, dass sich der Concepto zugrunde liegende Formalismus CLF (Concept Language Formalism) mit Topic Maps vorteilhaft abbilden lässt 3 Damit können Begriffs- und Themennetze realisiert werden, die auf expliziten Begriffssystemen beruhen. Seitens der Wissensorganisation besteht die Notwendigkeit, sich mit aktuellen Entwicklungen auf dem Gebiet des Semantic Web und ontology engineering vertraut zu machen, aber auch die eigene Kompetenz stärker aktiv in diese Gebiete einzubringen. Damit dies geschehen kann, führt dieser Beitrag zum besseren Verständnis zunächst aus Sicht der Wissensorganisation knapp in Ontologien und Topic Maps ein und diskutiert wichtige Überschneidungsbereiche.
  4. Panzer, M.; Zeng, M.L.: Modeling classification systems in SKOS : Some challenges and best-practice (2009) 0.00
    0.0013456206 = product of:
      0.012110585 = sum of:
        0.012110585 = product of:
          0.02422117 = sum of:
            0.02422117 = weight(_text_:web in 3717) [ClassicSimilarity], result of:
              0.02422117 = score(doc=3717,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.25239927 = fieldWeight in 3717, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3717)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Representing classification systems on the web for publication and exchange continues to be a challenge within the SKOS framework. This paper focuses on the differences between classification schemes and other families of KOS (knowledge organization systems) that make it difficult to express classifications without sacrificing a large amount of their semantic richness. Issues resulting from the specific set of relationships between classes and topics that defines the basic nature of any classification system are discussed. Where possible, different solutions within the frameworks of SKOS and OWL are proposed and examined.
  5. Bittner, T.; Donnelly, M.; Winter, S.: Ontology and semantic interoperability (2006) 0.00
    0.0013279931 = product of:
      0.011951938 = sum of:
        0.011951938 = product of:
          0.023903877 = sum of:
            0.023903877 = weight(_text_:22 in 4820) [ClassicSimilarity], result of:
              0.023903877 = score(doc=4820,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.23214069 = fieldWeight in 4820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4820)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Date
    3.12.2016 18:39:22
  6. Widhalm, R.; Mueck, T.A.: Merging topics in well-formed XML topic maps (2003) 0.00
    0.001153389 = product of:
      0.010380501 = sum of:
        0.010380501 = product of:
          0.020761002 = sum of:
            0.020761002 = weight(_text_:web in 2186) [ClassicSimilarity], result of:
              0.020761002 = score(doc=2186,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.21634221 = fieldWeight in 2186, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2186)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Source
    The Semantic Web - ISWC 2003. Eds. D. Fensel et al
  7. Dobrev, P.; Kalaydjiev, O.; Angelova, G.: From conceptual structures to semantic interoperability of content (2007) 0.00
    0.001106661 = product of:
      0.009959949 = sum of:
        0.009959949 = product of:
          0.019919898 = sum of:
            0.019919898 = weight(_text_:22 in 4607) [ClassicSimilarity], result of:
              0.019919898 = score(doc=4607,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.19345059 = fieldWeight in 4607, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4607)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Source
    Conceptual structures: knowledge architectures for smart applications: 15th International Conference on Conceptual Structures, ICCS 2007, Sheffield, UK, July 22 - 27, 2007 ; proceedings. Eds.: U. Priss u.a
  8. Ehrig, M.; Studer, R.: Wissensvernetzung durch Ontologien (2006) 0.00
    9.611576E-4 = product of:
      0.008650418 = sum of:
        0.008650418 = product of:
          0.017300837 = sum of:
            0.017300837 = weight(_text_:web in 5901) [ClassicSimilarity], result of:
              0.017300837 = score(doc=5901,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.18028519 = fieldWeight in 5901, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5901)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Source
    Semantic Web: Wege zur vernetzten Wissensgesellschaft. Hrsg.: T. Pellegrini, u. A. Blumauer