Search (5 results, page 1 of 1)

  • × theme_ss:"Semantische Interoperabilität"
  • × theme_ss:"Wissensrepräsentation"
  1. Soergel, D.: Towards a relation ontology for the Semantic Web (2011) 0.02
    0.015959973 = product of:
      0.031919945 = sum of:
        0.031919945 = product of:
          0.06383989 = sum of:
            0.06383989 = weight(_text_:n in 4342) [ClassicSimilarity], result of:
              0.06383989 = score(doc=4342,freq=2.0), product of:
                0.22335295 = queryWeight, product of:
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.05180212 = queryNorm
                0.28582513 = fieldWeight in 4342, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4342)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Semantic Web consists of data structured for use by computer programs, such as data sets made available under the Linked Open Data initiative. Much of this data is structured following the entity-relationship model encoded in RDF for syntactic interoperability. For semantic interoperability, the semantics of the relationships used in any given dataset needs to be made explicit. Ultimately this requires an inventory of these relationships structured around a relation ontology. This talk will outline a blueprint for such an inventory, including a format for the description/definition of binary and n-ary relations, drawing on ideas put forth in the classification and thesaurus community over the last 60 years, upper level ontologies, systems like FrameNet, the Buffalo Relation Ontology, and an analysis of linked data sets.
  2. Amarger, F.; Chanet, J.-P.; Haemmerlé, O.; Hernandez, N.; Roussey, C.: SKOS sources transformations for ontology engineering : agronomical taxonomy use case (2014) 0.02
    0.015959973 = product of:
      0.031919945 = sum of:
        0.031919945 = product of:
          0.06383989 = sum of:
            0.06383989 = weight(_text_:n in 1593) [ClassicSimilarity], result of:
              0.06383989 = score(doc=1593,freq=2.0), product of:
                0.22335295 = queryWeight, product of:
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.05180212 = queryNorm
                0.28582513 = fieldWeight in 1593, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1593)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  3. Koutsomitropoulos, D.A.; Solomou, G.D.; Alexopoulos, A.D.; Papatheodorou, T.S.: Semantic metadata interoperability and inference-based querying in digital repositories (2009) 0.01
    0.012616317 = product of:
      0.025232634 = sum of:
        0.025232634 = product of:
          0.100930534 = sum of:
            0.100930534 = weight(_text_:authors in 3731) [ClassicSimilarity], result of:
              0.100930534 = score(doc=3731,freq=4.0), product of:
                0.23615624 = queryWeight, product of:
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.05180212 = queryNorm
                0.42738882 = fieldWeight in 3731, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3731)
          0.25 = coord(1/4)
      0.5 = coord(1/2)
    
    Abstract
    Metadata applications have evolved in time into highly structured "islands of information" about digital resources, often bearing a strong semantic interpretation. Scarcely however are these semantics being communicated in machine readable and understandable ways. At the same time, the process for transforming the implied metadata knowledge into explicit Semantic Web descriptions can be problematic and is not always evident. In this article we take upon the well-established Dublin Core metadata standard as well as other metadata schemata, which often appear in digital repositories set-ups, and suggest a proper Semantic Web OWL ontology. In this process the authors cope with discrepancies and incompatibilities, indicative of such attempts, in novel ways. Moreover, we show the potential and necessity of this approach by demonstrating inferences on the resulting ontology, instantiated with actual metadata records. The authors conclude by presenting a working prototype that provides for inference-based querying on top of digital repositories.
  4. Bittner, T.; Donnelly, M.; Winter, S.: Ontology and semantic interoperability (2006) 0.01
    0.010527709 = product of:
      0.021055417 = sum of:
        0.021055417 = product of:
          0.042110834 = sum of:
            0.042110834 = weight(_text_:22 in 4820) [ClassicSimilarity], result of:
              0.042110834 = score(doc=4820,freq=2.0), product of:
                0.1814022 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05180212 = queryNorm
                0.23214069 = fieldWeight in 4820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4820)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    3.12.2016 18:39:22
  5. Dobrev, P.; Kalaydjiev, O.; Angelova, G.: From conceptual structures to semantic interoperability of content (2007) 0.01
    0.00877309 = product of:
      0.01754618 = sum of:
        0.01754618 = product of:
          0.03509236 = sum of:
            0.03509236 = weight(_text_:22 in 4607) [ClassicSimilarity], result of:
              0.03509236 = score(doc=4607,freq=2.0), product of:
                0.1814022 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05180212 = queryNorm
                0.19345059 = fieldWeight in 4607, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4607)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Conceptual structures: knowledge architectures for smart applications: 15th International Conference on Conceptual Structures, ICCS 2007, Sheffield, UK, July 22 - 27, 2007 ; proceedings. Eds.: U. Priss u.a