Search (8 results, page 1 of 1)

  • × theme_ss:"Semantische Interoperabilität"
  • × type_ss:"a"
  • × type_ss:"el"
  • × year_i:[2000 TO 2010}
  1. Heflin, J.; Hendler, J.: Semantic interoperability on the Web (2000) 0.03
    0.026575929 = product of:
      0.053151857 = sum of:
        0.053151857 = sum of:
          0.009471525 = weight(_text_:a in 759) [ClassicSimilarity], result of:
            0.009471525 = score(doc=759,freq=8.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.17835285 = fieldWeight in 759, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0546875 = fieldNorm(doc=759)
          0.043680333 = weight(_text_:22 in 759) [ClassicSimilarity], result of:
            0.043680333 = score(doc=759,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.2708308 = fieldWeight in 759, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=759)
      0.5 = coord(1/2)
    
    Abstract
    XML will have a profound impact on the way data is exchanged on the Internet. An important feature of this language is the separation of content from presentation, which makes it easier to select and/or reformat the data. However, due to the likelihood of numerous industry and domain specific DTDs, those who wish to integrate information will still be faced with the problem of semantic interoperability. In this paper we discuss why this problem is not solved by XML, and then discuss why the Resource Description Framework is only a partial solution. We then present the SHOE language, which we feel has many of the features necessary to enable a semantic web, and describe an existing set of tools that make it easy to use the language.
    Date
    11. 5.2013 19:22:18
    Type
    a
  2. Bittner, T.; Donnelly, M.; Winter, S.: Ontology and semantic interoperability (2006) 0.02
    0.020749755 = product of:
      0.04149951 = sum of:
        0.04149951 = sum of:
          0.0040592253 = weight(_text_:a in 4820) [ClassicSimilarity], result of:
            0.0040592253 = score(doc=4820,freq=2.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.07643694 = fieldWeight in 4820, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=4820)
          0.037440285 = weight(_text_:22 in 4820) [ClassicSimilarity], result of:
            0.037440285 = score(doc=4820,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.23214069 = fieldWeight in 4820, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=4820)
      0.5 = coord(1/2)
    
    Date
    3.12.2016 18:39:22
    Type
    a
  3. Naudet, Y.; Latour, T.; Chen, D.: ¬A Systemic approach to Interoperability formalization (2009) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 2740) [ClassicSimilarity], result of:
              0.00994303 = score(doc=2740,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 2740, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2740)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    With a first version developed last year, the Ontology of Interoperability (OoI) aims at formally describing concepts relating to problems and solutions in the domain of interoperability. From the beginning, the OoI has its foundations in the systemic theory and addresses interoperability from the general point of view of a system, whether it is composed by other systems (systems-of-systems) or not. In this paper, we present the last OoI focusing on the systemic approach. We then integrate a classification of interoperability knowledge provided by the Framework for Enterprise Interoperability. This way, we contextualize the OoI with a specific vocabulary to the enterprise domain, where solutions to interoperability problems are characterized according to interoperability approaches defined in the ISO 14258 and both solutions and problems can be localized into enterprises levels and characterized by interoperability levels, as defined in the European Interoperability Framework.
    Type
    a
  4. Wake, S.; Nicholson, D.: HILT: High-Level Thesaurus Project : building consensus for interoperable subject access across communities (2001) 0.00
    0.0021393995 = product of:
      0.004278799 = sum of:
        0.004278799 = product of:
          0.008557598 = sum of:
            0.008557598 = weight(_text_:a in 1224) [ClassicSimilarity], result of:
              0.008557598 = score(doc=1224,freq=20.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.16114321 = fieldWeight in 1224, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1224)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article provides an overview of the work carried out by the HILT Project <http://hilt.cdlr.strath.ac.uk> in making recommendations towards interoperable subject access, or cross-searching and browsing distributed services amongst the archives, libraries, museums and electronic services sectors. The article details consensus achieved at the 19 June 2001 HILT Workshop and discusses the HILT Stakeholder Survey. In 1999 Péter Jascó wrote that "savvy searchers" are asking for direction. Three years later the scenario he describes, that of searchers cross-searching databases where the subject vocabulary used in each case is different, still rings true. Jascó states that, in many cases, databases do not offer the necessary aids required to use the "preferred terms of the subject-controlled vocabulary". The databases to which Jascó refers are Dialog and DataStar. However, the situation he describes applies as well to the area that HILT is researching: that of cross-searching and browsing by subject across databases and catalogues in archives, libraries, museums and online information services. So how does a user access information on a particular subject when it is indexed across a multitude of services under different, but quite often similar, subject terms? Also, if experienced searchers are having problems, what about novice searchers? As information professionals, it is our role to investigate such problems and recommend solutions. Although there is no hard empirical evidence one way or another, HILT participants agree that the problem for users attempting to search across databases is real. There is a strong likelihood that users are disadvantaged by the use of different subject terminology combined with a multitude of different practices taking place within the archive, library, museums and online communities. Arguably, failure to address this problem of interoperability undermines the value of cross-searching and browsing facilities, and wastes public money because relevant resources are 'hidden' from searchers. HILT is charged with analysing this broad problem through qualitative methods, with the main aim of presenting a set of recommendations on how to make it easier to cross-search and browse distributed services. Because this is a very large problem composed of many strands, HILT recognizes that any proposed solutions must address a host of issues. Recommended solutions must be affordable, sustainable, politically acceptable, useful, future-proof and international in scope. It also became clear to the HILT team that progress toward finding solutions to the interoperability problem could only be achieved through direct dialogue with other parties keen to solve this problem, and that the problem was as much about consensus building as it was about finding a solution. This article describes how HILT approached the cross-searching problem; how it investigated the nature of the problem, detailing results from the HILT Stakeholder Survey; and how it achieved consensus through the recent HILT Workshop.
    Type
    a
  5. Doerr, M.: Semantic problems of thesaurus mapping (2001) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 5902) [ClassicSimilarity], result of:
              0.008285859 = score(doc=5902,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 5902, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5902)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    With networked information access to heterogeneous data sources, the problem of terminology provision and interoperability of controlled vocabulary schemes such as thesauri becomes increasingly urgent. Solutions are needed to improve the performance of full-text retrieval systems and to guide the design of controlled terminology schemes for use in structured data, including metadata. Thesauri are created in different languages, with different scope and points of view and at different levels of abstraction and detail, to accomodate access to a specific group of collections. In any wider search accessing distributed collections, the user would like to start with familiar terminology and let the system find out the correspondences to other terminologies in order to retrieve equivalent results from all addressed collections. This paper investigates possible semantic differences that may hinder the unambiguous mapping and transition from one thesaurus to another. It focusses on the differences of meaning of terms and their relations as intended by their creators for indexing and querying a specific collection, in contrast to methods investigating the statistical relevance of terms for objects in a collection. It develops a notion of optimal mapping, paying particular attention to the intellectual quality of mappings between terms from different vocabularies and to problems of polysemy. Proposals are made to limit the vagueness introduced by the transition from one vocabulary to another. The paper shows ways in which thesaurus creators can improve their methodology to meet the challenges of networked access of distributed collections created under varying conditions. For system implementers, the discussion will lead to a better understanding of the complexity of the problem
    Type
    a
  6. Hoffmann, P.; Médini and , L.; Ghodous, P.: Using context to improve semantic interoperability (2006) 0.00
    0.0020506454 = product of:
      0.004101291 = sum of:
        0.004101291 = product of:
          0.008202582 = sum of:
            0.008202582 = weight(_text_:a in 4434) [ClassicSimilarity], result of:
              0.008202582 = score(doc=4434,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1544581 = fieldWeight in 4434, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4434)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper presents an approach to enhance interoperability between heterogeneous ontologies. It consists in adapting the ranking of concepts to the final users and their work context. The computations are based on an upper domain ontology, a task hierarchy and a user profile. As prerequisites, OWL ontologie have to be given, and an articulation ontology has to be built.
    Type
    a
  7. Krötzsch, M.; Hitzler, P.; Ehrig, M.; Sure, Y.: Category theory in ontology research : concrete gain from an abstract approach (2004 (?)) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 4538) [ClassicSimilarity], result of:
              0.007030784 = score(doc=4538,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 4538, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4538)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The focus of research on representing and reasoning with knowledge traditionally has been on single specifications and appropriate inference paradigms to draw conclusions from such data. Accordingly, this is also an essential aspect of ontology research which has received much attention in recent years. But ontologies introduce another new challenge based on the distributed nature of most of their applications, which requires to relate heterogeneous ontological specifications and to integrate information from multiple sources. These problems have of course been recognized, but many current approaches still lack the deep formal backgrounds on which todays reasoning paradigms are already founded. Here we propose category theory as a well-explored and very extensive mathematical foundation for modelling distributed knowledge. A particular prospect is to derive conclusions from the structure of those distributed knowledge bases, as it is for example needed when merging ontologies
    Type
    a
  8. Nicholson, D.: Help us make HILT's terminology services useful in your information service (2008) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 3654) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=3654,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 3654, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3654)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The JISC-funded HILT project is looking to make contact with staff in information services or projects interested in helping it test and refine its developing terminology services. The project is currently working to create pilot web services that will deliver machine-readable terminology and cross-terminology mappings data likely to be useful to information services wishing to extend or enhance the efficacy of their subject search or browse services. Based on SRW/U, SOAP, and SKOS, the HILT facilities, when fully operational, will permit such services to improve their own subject search and browse mechanisms by using HILT data in a fashion transparent to their users. On request, HILT will serve up machine-processable data on individual subject schemes (broader terms, narrower terms, hierarchy information, preferred and non-preferred terms, and so on) and interoperability data (usually intellectual or automated mappings between schemes, but the architecture allows for the use of other methods) - data that can be used to enhance user services. The project is also developing an associated toolkit that will help service technical staff to embed HILT-related functionality into their services. The primary aim is to serve JISC funded information services or services at JISC institutions, but information services outside the JISC domain may also find the proposed services useful and wish to participate in the test and refine process.
    Type
    a