Search (28 results, page 2 of 2)

  • × theme_ss:"Semantische Interoperabilität"
  • × type_ss:"el"
  • × year_i:[2010 TO 2020}
  1. Niccolucci, F.: Linking theory with practice : CIDOC CRM-based gazetteers and time-period thesauri (2015) 0.01
    0.0053105257 = product of:
      0.021242103 = sum of:
        0.021242103 = product of:
          0.042484205 = sum of:
            0.042484205 = weight(_text_:organization in 2247) [ClassicSimilarity], result of:
              0.042484205 = score(doc=2247,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.23635197 = fieldWeight in 2247, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2247)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Content
    Vortrag anlässlich: 14th European Networked Knowledge Organization Systems (NKOS) Workshop, TPDL 2015 Conference in Poznan, Poland, Friday 18th September 2015.
  2. Shaw, R.; Rabinowitz, A.; Golden, P.; Kansa, E.: Report on and demonstration of the PeriodO period gazetteer (2015) 0.01
    0.0053105257 = product of:
      0.021242103 = sum of:
        0.021242103 = product of:
          0.042484205 = sum of:
            0.042484205 = weight(_text_:organization in 2249) [ClassicSimilarity], result of:
              0.042484205 = score(doc=2249,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.23635197 = fieldWeight in 2249, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2249)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Content
    Vortrag anlässlich: 14th European Networked Knowledge Organization Systems (NKOS) Workshop, TPDL 2015 Conference in Poznan, Poland, Friday 18th September 2015.
  3. Manguinhas, H.; Charles, V.; Isaac, A.; Miles, T.; Lima, A.; Neroulidis, A.; Ginouves, V.; Atsidis, D.; Hildebrand, M.; Brinkerink, M.; Gordea, S.: Linking subject labels in cultural heritage metadata to MIMO vocabulary using CultuurLink (2016) 0.01
    0.0053105257 = product of:
      0.021242103 = sum of:
        0.021242103 = product of:
          0.042484205 = sum of:
            0.042484205 = weight(_text_:organization in 3107) [ClassicSimilarity], result of:
              0.042484205 = score(doc=3107,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.23635197 = fieldWeight in 3107, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3107)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Proceedings of the 15th European Networked Knowledge Organization Systems Workshop (NKOS 2016) co-located with the 20th International Conference on Theory and Practice of Digital Libraries 2016 (TPDL 2016), Hannover, Germany, September 9, 2016. Edi. by Philipp Mayr et al. [http://ceur-ws.org/Vol-1676/=urn:nbn:de:0074-1676-5]
  4. Tudhope, D.; Binding, C.: Mapping between linked data vocabularies in ARIADNE (2015) 0.00
    0.004425438 = product of:
      0.017701752 = sum of:
        0.017701752 = product of:
          0.035403505 = sum of:
            0.035403505 = weight(_text_:organization in 2250) [ClassicSimilarity], result of:
              0.035403505 = score(doc=2250,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.19695997 = fieldWeight in 2250, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2250)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Content
    Vortrag anlässlich: 14th European Networked Knowledge Organization Systems (NKOS) Workshop, TPDL 2015 Conference in Poznan, Poland, Friday 18th September 2015.
  5. Bandholtz, T.; Schulte-Coerne, T.; Glaser, R.; Fock, J.; Keller, T.: iQvoc - open source SKOS(XL) maintenance and publishing tool (2010) 0.00
    0.0030039945 = product of:
      0.012015978 = sum of:
        0.012015978 = weight(_text_:information in 604) [ClassicSimilarity], result of:
          0.012015978 = score(doc=604,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.13576832 = fieldWeight in 604, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=604)
      0.25 = coord(1/4)
    
    Abstract
    iQvoc is a new open source SKOS-XL vocabulary management tool developed by the Federal Environment Agency, Germany, and innoQ Deutschland GmbH. Its immediate purpose is maintaining and publishing reference vocabularies in the upcoming Linked Data cloud of environmental information, but it may be easily adapted to host any SKOS- XL compliant vocabulary. iQvoc is implemented as a Ruby on Rails application running on top of JRuby - the Java implementation of the Ruby Programming Language. To increase the user experience when editing content, iQvoc uses heavily the JavaScript library jQuery.
  6. Wicaksana, I.W.S.; Wahyudi, B.: Comparison Latent Semantic and WordNet approach for semantic similarity calculation (2011) 0.00
    0.0030039945 = product of:
      0.012015978 = sum of:
        0.012015978 = weight(_text_:information in 689) [ClassicSimilarity], result of:
          0.012015978 = score(doc=689,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.13576832 = fieldWeight in 689, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=689)
      0.25 = coord(1/4)
    
    Abstract
    Information exchange among many sources in Internet is more autonomous, dynamic and free. The situation drive difference view of concepts among sources. For example, word 'bank' has meaning as economic institution for economy domain, but for ecology domain it will be defined as slope of river or lake. In this paper, we will evaluate latent semantic and WordNet approach to calculate semantic similarity. The evaluation will be run for some concepts from different domain with reference by expert or human. Result of the evaluation can provide a contribution for mapping of concept, query rewriting, interoperability, etc.
  7. Vocht, L. De: Exploring semantic relationships in the Web of Data : Semantische relaties verkennen in data op het web (2017) 0.00
    0.0028385078 = product of:
      0.011354031 = sum of:
        0.011354031 = weight(_text_:information in 4232) [ClassicSimilarity], result of:
          0.011354031 = score(doc=4232,freq=14.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.128289 = fieldWeight in 4232, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.01953125 = fieldNorm(doc=4232)
      0.25 = coord(1/4)
    
    Abstract
    After the launch of the World Wide Web, it became clear that searching documentson the Web would not be trivial. Well-known engines to search the web, like Google, focus on search in web documents using keywords. The documents are structured and indexed to ensure keywords match documents as accurately as possible. However, searching by keywords does not always suice. It is oen the case that users do not know exactly how to formulate the search query or which keywords guarantee retrieving the most relevant documents. Besides that, it occurs that users rather want to browse information than looking up something specific. It turned out that there is need for systems that enable more interactivity and facilitate the gradual refinement of search queries to explore the Web. Users expect more from the Web because the short keyword-based queries they pose during search, do not suffice for all cases. On top of that, the Web is changing structurally. The Web comprises, apart from a collection of documents, more and more linked data, pieces of information structured so they can be processed by machines. The consequently applied semantics allow users to exactly indicate machines their search intentions. This is made possible by describing data following controlled vocabularies, concept lists composed by experts, published uniquely identifiable on the Web. Even so, it is still not trivial to explore data on the Web. There is a large variety of vocabularies and various data sources use different terms to identify the same concepts.
    This PhD-thesis describes how to effectively explore linked data on the Web. The main focus is on scenarios where users want to discover relationships between resources rather than finding out more about something specific. Searching for a specific document or piece of information fits in the theoretical framework of information retrieval and is associated with exploratory search. Exploratory search goes beyond 'looking up something' when users are seeking more detailed understanding, further investigation or navigation of the initial search results. The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. Queries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research. Our first technique focuses on the interactive visualization of search results. Linked data resources can be brought in relation with each other at will. This leads to complex and diverse graphs structures. Our technique facilitates navigation and supports a workflow starting from a broad overview on the data and allows narrowing down until the desired level of detail to then broaden again. To validate the flow, two visualizations where implemented and presented to test-users. The users judged the usability of the visualizations, how the visualizations fit in the workflow and to which degree their features seemed useful for the exploration of linked data.
    The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. eries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research.
    When we speak about finding relationships between resources, it is necessary to dive deeper in the structure. The graph structure of linked data where the semantics give meaning to the relationships between resources enable the execution of pathfinding algorithms. The assigned weights and heuristics are base components of such algorithms and ultimately define (the order) which resources are included in a path. These paths explain indirect connections between resources. Our third technique proposes an algorithm that optimizes the choice of resources in terms of serendipity. Some optimizations guard the consistence of candidate-paths where the coherence of consecutive connections is maximized to avoid trivial and too arbitrary paths. The implementation uses the A* algorithm, the de-facto reference when it comes to heuristically optimized minimal cost paths. The effectiveness of paths was measured based on common automatic metrics and surveys where the users could indicate their preference for paths, generated each time in a different way. Finally, all our techniques are applied to a use case about publications in digital libraries where they are aligned with information about scientific conferences and researchers. The application to this use case is a practical example because the different aspects of exploratory search come together. In fact, the techniques also evolved from the experiences when implementing the use case. Practical details about the semantic model are explained and the implementation of the search system is clarified module by module. The evaluation positions the result, a prototype of a tool to explore scientific publications, researchers and conferences next to some important alternatives.
  8. Giunchiglia, F.; Maltese, V.; Dutta, B.: Domains and context : first steps towards managing diversity in knowledge (2011) 0.00
    0.0021457102 = product of:
      0.008582841 = sum of:
        0.008582841 = weight(_text_:information in 603) [ClassicSimilarity], result of:
          0.008582841 = score(doc=603,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 603, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=603)
      0.25 = coord(1/4)
    
    Imprint
    Trento : University of Trento / Department of Information engineering and Computer Science