Search (25 results, page 1 of 2)

  • × theme_ss:"Semantische Interoperabilität"
  • × type_ss:"el"
  • × year_i:[2010 TO 2020}
  1. Hafner, R.; Schelling, B.: Automatisierung der Sacherschließung mit Semantic Web Technologie (2015) 0.12
    0.11513149 = product of:
      0.2878287 = sum of:
        0.12377582 = weight(_text_:semantic in 8365) [ClassicSimilarity], result of:
          0.12377582 = score(doc=8365,freq=2.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.64313614 = fieldWeight in 8365, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.109375 = fieldNorm(doc=8365)
        0.1640529 = sum of:
          0.076254606 = weight(_text_:web in 8365) [ClassicSimilarity], result of:
            0.076254606 = score(doc=8365,freq=2.0), product of:
              0.15105948 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.04628742 = queryNorm
              0.50479853 = fieldWeight in 8365, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.109375 = fieldNorm(doc=8365)
          0.08779829 = weight(_text_:22 in 8365) [ClassicSimilarity], result of:
            0.08779829 = score(doc=8365,freq=2.0), product of:
              0.16209066 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04628742 = queryNorm
              0.5416616 = fieldWeight in 8365, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.109375 = fieldNorm(doc=8365)
      0.4 = coord(2/5)
    
    Date
    22. 6.2015 16:08:38
  2. Kollia, I.; Tzouvaras, V.; Drosopoulos, N.; Stamou, G.: ¬A systemic approach for effective semantic access to cultural content (2012) 0.10
    0.09534738 = product of:
      0.1589123 = sum of:
        0.023397226 = weight(_text_:retrieval in 130) [ClassicSimilarity], result of:
          0.023397226 = score(doc=130,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.16710453 = fieldWeight in 130, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=130)
        0.10828129 = weight(_text_:semantic in 130) [ClassicSimilarity], result of:
          0.10828129 = score(doc=130,freq=12.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.56262696 = fieldWeight in 130, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=130)
        0.027233787 = product of:
          0.054467574 = sum of:
            0.054467574 = weight(_text_:web in 130) [ClassicSimilarity], result of:
              0.054467574 = score(doc=130,freq=8.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.36057037 = fieldWeight in 130, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=130)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    A large on-going activity for digitization, dissemination and preservation of cultural heritage is taking place in Europe, United States and the world, which involves all types of cultural institutions, i.e., galleries, libraries, museums, archives and all types of cultural content. The development of Europeana, as a single point of access to European Cultural Heritage, has probably been the most important result of the activities in the field till now. Semantic interoperability, linked open data, user involvement and user generated content are key issues in these developments. This paper presents a system that provides content providers and users the ability to map, in an effective way, their own metadata schemas to common domain standards and the Europeana (ESE, EDM) data models. The system is currently largely used by many European research projects and the Europeana. Based on these mappings, semantic query answering techniques are proposed as a means for effective access to digital cultural heritage, providing users with content enrichment, linking of data based on their involvement and facilitating content search and retrieval. An experimental study is presented, involving content from national content aggregators, as well as thematic content aggregators and the Europeana, which illustrates the proposed system
    Content
    Beitrag eines Schwerpunktthemas: Semantic Web and Reasoning for Cultural Heritage and Digital Libraries: http://www.semantic-web-journal.net/content/systemic-approach-eff%0Bective-semantic-access-cultural-content http://www.semantic-web-journal.net/sites/default/files/swj147_3.pdf.
    Source
    Semantic Web journal. 3(2012) no.1, S.65-83
  3. Wenige, L.; Ruhland, J.: Similarity-based knowledge graph queries for recommendation retrieval (2019) 0.08
    0.07973751 = product of:
      0.13289584 = sum of:
        0.04679445 = weight(_text_:retrieval in 5864) [ClassicSimilarity], result of:
          0.04679445 = score(doc=5864,freq=8.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.33420905 = fieldWeight in 5864, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5864)
        0.062516235 = weight(_text_:semantic in 5864) [ClassicSimilarity], result of:
          0.062516235 = score(doc=5864,freq=4.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.32483283 = fieldWeight in 5864, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5864)
        0.02358515 = product of:
          0.0471703 = sum of:
            0.0471703 = weight(_text_:web in 5864) [ClassicSimilarity], result of:
              0.0471703 = score(doc=5864,freq=6.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.3122631 = fieldWeight in 5864, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5864)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Current retrieval and recommendation approaches rely on hard-wired data models. This hinders personalized cus-tomizations to meet information needs of users in a more flexible manner. Therefore, the paper investigates how similarity-basedretrieval strategies can be combined with graph queries to enable users or system providers to explore repositories in the LinkedOpen Data (LOD) cloud more thoroughly. For this purpose, we developed novel content-based recommendation approaches.They rely on concept annotations of Simple Knowledge Organization System (SKOS) vocabularies and a SPARQL-based querylanguage that facilitates advanced and personalized requests for openly available knowledge graphs. We have comprehensivelyevaluated the novel search strategies in several test cases and example application domains (i.e., travel search and multimediaretrieval). The results of the web-based online experiments showed that our approaches increase the recall and diversity of rec-ommendations or at least provide a competitive alternative strategy of resource access when conventional methods do not providehelpful suggestions. The findings may be of use for Linked Data-enabled recommender systems (LDRS) as well as for semanticsearch engines that can consume LOD resources. (PDF) Similarity-based knowledge graph queries for recommendation retrieval. Available from: https://www.researchgate.net/publication/333358714_Similarity-based_knowledge_graph_queries_for_recommendation_retrieval [accessed May 21 2020].
    Content
    Vgl.: https://www.researchgate.net/publication/333358714_Similarity-based_knowledge_graph_queries_for_recommendation_retrieval. Vgl. auch: http://semantic-web-journal.net/content/similarity-based-knowledge-graph-queries-recommendation-retrieval-1.
    Source
    Semantic Web. 10(2019) 6, S.1007-1037
  4. Takhirov, N.; Aalberg, T.; Duchateau, F.; Zumer, M.: FRBR-ML: a FRBR-based framework for semantic interoperability (2012) 0.06
    0.058745977 = product of:
      0.14686494 = sum of:
        0.1225063 = weight(_text_:semantic in 134) [ClassicSimilarity], result of:
          0.1225063 = score(doc=134,freq=24.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.63653976 = fieldWeight in 134, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.03125 = fieldNorm(doc=134)
        0.02435864 = product of:
          0.04871728 = sum of:
            0.04871728 = weight(_text_:web in 134) [ClassicSimilarity], result of:
              0.04871728 = score(doc=134,freq=10.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.32250395 = fieldWeight in 134, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=134)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Metadata related to cultural items such as literature, music and movies is a valuable resource that is currently exploited in many applications and services based on semantic web technologies. A vast amount of such information has been created by memory institutions in the last decades using different standard or ad hoc schemas, and a main challenge is to make this legacy data accessible as reusable semantic data. On one hand, this is a syntactic problem that can be solved by transforming to formats that are compatible with the tools and services used for semantic aware services. On the other hand, this is a semantic problem. Simply transforming from one format to another does not automatically enable semantic interoperability and legacy data often needs to be reinterpreted as well as transformed. The conceptual model in the Functional Requirements for Bibliographic Records, initially developed as a conceptual framework for library standards and systems, is a major step towards a shared semantic model of the products of artistic and intellectual endeavor of mankind. The model is generally accepted as sufficiently generic to serve as a conceptual framework for a broad range of cultural heritage metadata. Unfortunately, the existing large body of legacy data makes a transition to this model difficult. For instance, most bibliographic data is still only available in various MARC-based formats which is hard to render into reusable and meaningful semantic data. Making legacy bibliographic data accessible as semantic data is a complex problem that includes interpreting and transforming the information. In this article, we present our work on transforming and enhancing legacy bibliographic information into a representation where the structure and semantics of the FRBR model is explicit.
    Content
    Beitrag eines Schwerpunktthemas: Semantic Web and Reasoning for Cultural Heritage and Digital Libraries: http://www.semantic-web-journal.net/content/frbr-ml-frbr-based-framework-semantic-interoperability-0 http://www.semantic-web-journal.net/sites/default/files/swj161_3.pdf.
    Source
    Semantic Web journal. 3(2012) no.1, S.23-43
  5. Mitchell, J.S.; Zeng, M.L.; Zumer, M.: Modeling classification systems in multicultural and multilingual contexts (2012) 0.06
    0.05557645 = product of:
      0.13894112 = sum of:
        0.05304678 = weight(_text_:semantic in 1967) [ClassicSimilarity], result of:
          0.05304678 = score(doc=1967,freq=2.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.2756298 = fieldWeight in 1967, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.046875 = fieldNorm(doc=1967)
        0.085894346 = sum of:
          0.03268054 = weight(_text_:web in 1967) [ClassicSimilarity], result of:
            0.03268054 = score(doc=1967,freq=2.0), product of:
              0.15105948 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.04628742 = queryNorm
              0.21634221 = fieldWeight in 1967, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.046875 = fieldNorm(doc=1967)
          0.0532138 = weight(_text_:22 in 1967) [ClassicSimilarity], result of:
            0.0532138 = score(doc=1967,freq=4.0), product of:
              0.16209066 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04628742 = queryNorm
              0.32829654 = fieldWeight in 1967, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=1967)
      0.4 = coord(2/5)
    
    Abstract
    This paper reports on the second part of an initiative of the authors on researching classification systems with the conceptual model defined by the Functional Requirements for Subject Authority Data (FRSAD) final report. In an earlier study, the authors explored whether the FRSAD conceptual model could be extended beyond subject authority data to model classification data. The focus of the current study is to determine if classification data modeled using FRSAD can be used to solve real-world discovery problems in multicultural and multilingual contexts. The paper discusses the relationships between entities (same type or different types) in the context of classification systems that involve multiple translations and /or multicultural implementations. Results of two case studies are presented in detail: (a) two instances of the DDC (DDC 22 in English, and the Swedish-English mixed translation of DDC 22), and (b) Chinese Library Classification. The use cases of conceptual models in practice are also discussed.
    Source
    Beyond libraries - subject metadata in the digital environment and semantic web. IFLA Satellite Post-Conference, 17-18 August 2012, Tallinn
  6. Wang, S.; Isaac, A.; Schlobach, S.; Meij, L. van der; Schopman, B.: Instance-based semantic interoperability in the cultural heritage (2012) 0.05
    0.054206032 = product of:
      0.13551508 = sum of:
        0.10828129 = weight(_text_:semantic in 125) [ClassicSimilarity], result of:
          0.10828129 = score(doc=125,freq=12.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.56262696 = fieldWeight in 125, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=125)
        0.027233787 = product of:
          0.054467574 = sum of:
            0.054467574 = weight(_text_:web in 125) [ClassicSimilarity], result of:
              0.054467574 = score(doc=125,freq=8.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.36057037 = fieldWeight in 125, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=125)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    This paper gives a comprehensive overview over the problem of Semantic Interoperability in the Cultural Heritage domain, with a particular focus on solutions centered around extensional, i.e., instance-based, ontology matching methods. It presents three typical scenarios requiring interoperability, one with homogenous collections, one with heterogeneous collections, and one with multi-lingual collection. It discusses two different ways to evaluate potential alignments, one based on the application of re-indexing, one using a reference alignment. To these scenarios we apply extensional matching with different similarity measures which gives interesting insights. Finally, we firmly position our work in the Cultural Heritage context through an extensive discussion of the relevance for, and issues related to this specific field. The findings are as unspectacular as expected but nevertheless important: the provided methods can really improve interoperability in a number of important cases, but they are not universal solutions to all related problems. This paper will provide a solid foundation for any future work on Semantic Interoperability in the Cultural Heritage domain, in particular for anybody intending to apply extensional methods.
    Content
    Beitrag eines Schwerpunktthemas: Semantic Web and Reasoning for Cultural Heritage and Digital Libraries: http://www.semantic-web-journal.net/content/instance-based-semantic-interoperability-cultural-heritage http://www.semantic-web-journal.net/sites/default/files/swj157_1.pdf.
    Source
    Semantic Web journal. 3(2012) no.1, S.45-64
  7. Vocht, L. De: Exploring semantic relationships in the Web of Data : Semantische relaties verkennen in data op het web (2017) 0.05
    0.053013496 = product of:
      0.088355824 = sum of:
        0.011698613 = weight(_text_:retrieval in 4232) [ClassicSimilarity], result of:
          0.011698613 = score(doc=4232,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.08355226 = fieldWeight in 4232, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.01953125 = fieldNorm(doc=4232)
        0.049423426 = weight(_text_:semantic in 4232) [ClassicSimilarity], result of:
          0.049423426 = score(doc=4232,freq=10.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.25680292 = fieldWeight in 4232, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.01953125 = fieldNorm(doc=4232)
        0.027233787 = product of:
          0.054467574 = sum of:
            0.054467574 = weight(_text_:web in 4232) [ClassicSimilarity], result of:
              0.054467574 = score(doc=4232,freq=32.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.36057037 = fieldWeight in 4232, product of:
                  5.656854 = tf(freq=32.0), with freq of:
                    32.0 = termFreq=32.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=4232)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    After the launch of the World Wide Web, it became clear that searching documentson the Web would not be trivial. Well-known engines to search the web, like Google, focus on search in web documents using keywords. The documents are structured and indexed to ensure keywords match documents as accurately as possible. However, searching by keywords does not always suice. It is oen the case that users do not know exactly how to formulate the search query or which keywords guarantee retrieving the most relevant documents. Besides that, it occurs that users rather want to browse information than looking up something specific. It turned out that there is need for systems that enable more interactivity and facilitate the gradual refinement of search queries to explore the Web. Users expect more from the Web because the short keyword-based queries they pose during search, do not suffice for all cases. On top of that, the Web is changing structurally. The Web comprises, apart from a collection of documents, more and more linked data, pieces of information structured so they can be processed by machines. The consequently applied semantics allow users to exactly indicate machines their search intentions. This is made possible by describing data following controlled vocabularies, concept lists composed by experts, published uniquely identifiable on the Web. Even so, it is still not trivial to explore data on the Web. There is a large variety of vocabularies and various data sources use different terms to identify the same concepts.
    This PhD-thesis describes how to effectively explore linked data on the Web. The main focus is on scenarios where users want to discover relationships between resources rather than finding out more about something specific. Searching for a specific document or piece of information fits in the theoretical framework of information retrieval and is associated with exploratory search. Exploratory search goes beyond 'looking up something' when users are seeking more detailed understanding, further investigation or navigation of the initial search results. The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. Queries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research. Our first technique focuses on the interactive visualization of search results. Linked data resources can be brought in relation with each other at will. This leads to complex and diverse graphs structures. Our technique facilitates navigation and supports a workflow starting from a broad overview on the data and allows narrowing down until the desired level of detail to then broaden again. To validate the flow, two visualizations where implemented and presented to test-users. The users judged the usability of the visualizations, how the visualizations fit in the workflow and to which degree their features seemed useful for the exploration of linked data.
    The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. eries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research.
    When we speak about finding relationships between resources, it is necessary to dive deeper in the structure. The graph structure of linked data where the semantics give meaning to the relationships between resources enable the execution of pathfinding algorithms. The assigned weights and heuristics are base components of such algorithms and ultimately define (the order) which resources are included in a path. These paths explain indirect connections between resources. Our third technique proposes an algorithm that optimizes the choice of resources in terms of serendipity. Some optimizations guard the consistence of candidate-paths where the coherence of consecutive connections is maximized to avoid trivial and too arbitrary paths. The implementation uses the A* algorithm, the de-facto reference when it comes to heuristically optimized minimal cost paths. The effectiveness of paths was measured based on common automatic metrics and surveys where the users could indicate their preference for paths, generated each time in a different way. Finally, all our techniques are applied to a use case about publications in digital libraries where they are aligned with information about scientific conferences and researchers. The application to this use case is a practical example because the different aspects of exploratory search come together. In fact, the techniques also evolved from the experiences when implementing the use case. Practical details about the semantic model are explained and the implementation of the search system is clarified module by module. The evaluation positions the result, a prototype of a tool to explore scientific publications, researchers and conferences next to some important alternatives.
    Theme
    Semantic Web
  8. Suchowolec, K.; Lang, C.; Schneider, R.: Re-designing online terminology resources for German grammar (2016) 0.05
    0.052116044 = product of:
      0.08686007 = sum of:
        0.023397226 = weight(_text_:retrieval in 3108) [ClassicSimilarity], result of:
          0.023397226 = score(doc=3108,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.16710453 = fieldWeight in 3108, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3108)
        0.04420565 = weight(_text_:semantic in 3108) [ClassicSimilarity], result of:
          0.04420565 = score(doc=3108,freq=2.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.22969149 = fieldWeight in 3108, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3108)
        0.019257195 = product of:
          0.03851439 = sum of:
            0.03851439 = weight(_text_:web in 3108) [ClassicSimilarity], result of:
              0.03851439 = score(doc=3108,freq=4.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.25496176 = fieldWeight in 3108, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3108)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    The compilation of terminological vocabularies plays a central role in the organization and retrieval of scientific texts. Both simple keyword lists as well as sophisticated modellings of relationships between terminological concepts can make a most valuable contribution to the analysis, classification, and finding of appropriate digital documents, either on the Web or within local repositories. This seems especially true for long-established scientific fields with various theoretical and historical branches, such as linguistics, where the use of terminology within documents from different origins is sometimes far from being consistent. In this short paper, we report on the early stages of a project that aims at the re-design of an existing domain-specific KOS for grammatical content grammis. In particular, we deal with the terminological part of grammis and present the state-of-the-art of this online resource as well as the key re-design principles. Further, we propose questions regarding ramifications of the Linked Open Data and Semantic Web approaches for our re-design decisions.
  9. Haffner, A.: Internationalisierung der GND durch das Semantic Web (2012) 0.05
    0.047066003 = product of:
      0.11766501 = sum of:
        0.08752273 = weight(_text_:semantic in 318) [ClassicSimilarity], result of:
          0.08752273 = score(doc=318,freq=16.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.45476598 = fieldWeight in 318, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.02734375 = fieldNorm(doc=318)
        0.03014228 = product of:
          0.06028456 = sum of:
            0.06028456 = weight(_text_:web in 318) [ClassicSimilarity], result of:
              0.06028456 = score(doc=318,freq=20.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.39907828 = fieldWeight in 318, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=318)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Seit Bestehen der Menschheit sammelt der Mensch Informationen, seit Bestehen des Internets stellt der Mensch Informationen ins Web, seit Bestehen des Semantic Webs sollen auch Maschinen in die Lage versetzt werden mit diesen Informationen umzugehen. Das Bibliothekswesen ist einer der Sammler. Seit Jahrhunderten werden Kataloge und Bibliografien sowie Inventarnachweise geführt. Mit der Aufgabe des Zettelkatalogs hin zum Onlinekatalog wurde es Benutzern plötzlich möglich in Beständen komfortabel zu suchen. Durch die Bereitstellung von Daten aus dem Bibliothekswesen im Semantic Web sollen nicht nur die eigenen Katalogsysteme Zugriff auf diese Informationen erhalten, sondern jede beliebige Anwendung, die auf das Web zugreifen kann. Darüber hinaus ist die Vorstellung, dass sich die im Web befindenden Daten - in sofern möglich - miteinander verlinken und zu einem gigantischen semantischen Netz werden, das als ein großer Datenpool verwendet werden kann. Die Voraussetzung hierfür ist wie beim Übergang zum Onlinekatalog die Aufbereitung der Daten in einem passenden Format. Normdaten dienen im Bibliothekswesen bereits dazu eine Vernetzung der unterschiedlichen Bestände zu erlauben. Bei der Erschließung eines Buches wird nicht bloß gesagt, dass jemand, der Thomas Mann heißt, der Autor ist - es wird eine Verknüpfung vom Katalogisat zu dem Thomas Mann erzeugt, der am 6. Juni 1875 in Lübeck geboren und am 12. August 1955 in Zürich verstorben ist. Der Vorteil von Normdateneintragungen ist, dass sie zum eindeutigen Nachweis der Verfasserschaft oder Mitwirkung an einem Werk beitragen. Auch stehen Normdateneintragungen bereits allen Bibliotheken für die Nachnutzung bereit - der Schritt ins Semantic Web wäre somit die Öffnung der Normdaten für alle denkbaren Nutzergruppen.
    Die Gemeinsame Normdatei (GND) ist seit April 2012 die Datei, die die im deutschsprachigen Bibliothekswesen verwendeten Normdaten enthält. Folglich muss auf Basis dieser Daten eine Repräsentation für die Darstellung als Linked Data im Semantic Web etabliert werden. Neben der eigentlichen Bereitstellung von GND-Daten im Semantic Web sollen die Daten mit bereits als Linked Data vorhandenen Datenbeständen (DBpedia, VIAF etc.) verknüpft und nach Möglichkeit kompatibel sein, wodurch die GND einem internationalen und spartenübergreifenden Publikum zugänglich gemacht wird. Dieses Dokument dient vor allem zur Beschreibung, wie die GND-Linked-Data-Repräsentation entstand und dem Weg zur Spezifikation einer eignen Ontologie. Hierfür werden nach einer kurzen Einführung in die GND die Grundprinzipien und wichtigsten Standards für die Veröffentlichung von Linked Data im Semantic Web vorgestellt, um darauf aufbauend existierende Vokabulare und Ontologien des Bibliothekswesens betrachten zu können. Anschließend folgt ein Exkurs in das generelle Vorgehen für die Bereitstellung von Linked Data, wobei die so oft zitierte Open World Assumption kritisch hinterfragt und damit verbundene Probleme insbesondere in Hinsicht Interoperabilität und Nachnutzbarkeit aufgedeckt werden. Um Probleme der Interoperabilität zu vermeiden, wird den Empfehlungen der Library Linked Data Incubator Group [LLD11] gefolgt.
    Im Kapitel Anwendungsprofile als Basis für die Ontologieentwicklung wird die Spezifikation von Dublin Core Anwendungsprofilen kritisch betrachtet, um auszumachen wann und in welcher Form sich ihre Verwendung bei dem Vorhaben Bereitstellung von Linked Data anbietet. In den nachfolgenden Abschnitten wird die GND-Ontologie, welche als Standard für die Serialisierung von GND-Daten im Semantic Web dient, samt Modellierungsentscheidungen näher vorgestellt. Dabei wird insbesondere der Technik des Vocabulary Alignment eine prominente Position eingeräumt, da darin ein entscheidender Mechanismus zur Steigerung der Interoperabilität und Nachnutzbarkeit gesehen wird. Auch wird sich mit der Verlinkung zu externen Datensets intensiv beschäftigt. Hierfür wurden ausgewählte Datenbestände hinsichtlich ihrer Qualität und Aktualität untersucht und Empfehlungen für die Implementierung innerhalb des GND-Datenbestandes gegeben. Abschließend werden eine Zusammenfassung und ein Ausblick auf weitere Schritte gegeben.
  10. Mengel, T.; Svensson, L.: Dewey basics for mapping - Bringing Dewey mappings onto the Semantic Web (2015) 0.05
    0.046258036 = product of:
      0.11564509 = sum of:
        0.0884113 = weight(_text_:semantic in 1721) [ClassicSimilarity], result of:
          0.0884113 = score(doc=1721,freq=2.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.45938298 = fieldWeight in 1721, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.078125 = fieldNorm(doc=1721)
        0.027233787 = product of:
          0.054467574 = sum of:
            0.054467574 = weight(_text_:web in 1721) [ClassicSimilarity], result of:
              0.054467574 = score(doc=1721,freq=2.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.36057037 = fieldWeight in 1721, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1721)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
  11. Hafner, R.; Schelling, B.: Automatisierung der Sacherschließung mit Semantic-Web-Technologie (2015) 0.05
    0.045793124 = product of:
      0.114482805 = sum of:
        0.08752273 = weight(_text_:semantic in 2471) [ClassicSimilarity], result of:
          0.08752273 = score(doc=2471,freq=4.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.45476598 = fieldWeight in 2471, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2471)
        0.026960073 = product of:
          0.053920146 = sum of:
            0.053920146 = weight(_text_:web in 2471) [ClassicSimilarity], result of:
              0.053920146 = score(doc=2471,freq=4.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.35694647 = fieldWeight in 2471, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2471)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Der vorliegende Artikel möchte einen Ansatz vorstellen, der aufzeigt, wie die Bibliothek der Universität Konstanz - und andere Bibliotheken mit einer Haussystematik - bei ihrer eigenen Systematik bleiben und trotzdem von der Sacherschließungsarbeit anderer Bibliotheken profitieren können. Vorgestellt wird ein Konzept, das zeigt, wie mithilfe von Semantic-Web-Technologie Ähnlichkeitsrelationen zwischen verbaler Sacherschließung, RVK, DDC und hauseigenen Systematiken erstellt werden können, die das Übersetzen von Sacherschließungsinformationen in andere Ordnungssysteme erlauben und damit Automatisierung in der Sacherschließung möglich machen.
  12. Dunsire, G.; Willer, M.: Initiatives to make standard library metadata models and structures available to the Semantic Web (2010) 0.04
    0.041374445 = product of:
      0.10343611 = sum of:
        0.079077475 = weight(_text_:semantic in 3965) [ClassicSimilarity], result of:
          0.079077475 = score(doc=3965,freq=10.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.41088465 = fieldWeight in 3965, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.03125 = fieldNorm(doc=3965)
        0.02435864 = product of:
          0.04871728 = sum of:
            0.04871728 = weight(_text_:web in 3965) [ClassicSimilarity], result of:
              0.04871728 = score(doc=3965,freq=10.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.32250395 = fieldWeight in 3965, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3965)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    This paper describes recent initiatives to make standard library metadata models and structures available to the Semantic Web, including IFLA standards such as Functional Requirements for Bibliographic Records (FRBR), Functional Requirements for Authority Data (FRAD), and International Standard Bibliographic Description (ISBD) along with the infrastructure that supports them. The FRBR Review Group is currently developing representations of FRAD and the entityrelationship model of FRBR in resource description framework (RDF) applications, using a combination of RDF, RDF Schema (RDFS), Simple Knowledge Organisation System (SKOS) and Web Ontology Language (OWL), cross-relating both models where appropriate. The ISBD/XML Task Group is investigating the representation of ISBD in RDF. The IFLA Namespaces project is developing an administrative and technical infrastructure to support such initiatives and encourage uptake of standards by other agencies. The paper describes similar initiatives with related external standards such as RDA - resource description and access, REICAT (the new Italian cataloguing rules) and CIDOC Conceptual Reference Model (CRM). The DCMI RDA Task Group is working with the Joint Steering Committee for RDA to develop Semantic Web representations of RDA structural elements, which are aligned with FRBR and FRAD, and controlled metadata content vocabularies. REICAT is also based on FRBR, and an object-oriented version of FRBR has been integrated with CRM, which itself has an RDF representation. CRM was initially based on the metadata needs of the museum community, and is now seeking extension to the archives community with the eventual aim of developing a model common to the main cultural information domains of archives, libraries and museums. The Vocabulary Mapping Framework (VMF) project has developed a Semantic Web tool to automatically generate mappings between metadata models from the information communities, including publishers. The tool is based on several standards, including CRM, FRAD, FRBR, MARC21 and RDA.
    The paper discusses the importance of these initiatives in releasing as linked data the very large quantities of rich, professionally-generated metadata stored in formats based on these standards, such as UNIMARC and MARC21, addressing such issues as critical mass for semantic and statistical inferencing, integration with user- and machine-generated metadata, and authenticity, veracity and trust. The paper also discusses related initiatives to release controlled vocabularies, including the Dewey Decimal Classification (DDC), ISBD, Library of Congress Name Authority File (LCNAF), Library of Congress Subject Headings (LCSH), Rameau (French subject headings), Universal Decimal Classification (UDC), and the Virtual International Authority File (VIAF) as linked data. Finally, the paper discusses the potential collective impact of these initiatives on metadata workflows and management systems.
  13. Giunchiglia, F.; Maltese, V.; Dutta, B.: Domains and context : first steps towards managing diversity in knowledge (2011) 0.03
    0.03270937 = product of:
      0.08177343 = sum of:
        0.062516235 = weight(_text_:semantic in 603) [ClassicSimilarity], result of:
          0.062516235 = score(doc=603,freq=4.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.32483283 = fieldWeight in 603, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=603)
        0.019257195 = product of:
          0.03851439 = sum of:
            0.03851439 = weight(_text_:web in 603) [ClassicSimilarity], result of:
              0.03851439 = score(doc=603,freq=4.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.25496176 = fieldWeight in 603, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=603)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Despite the progress made, one of the main barriers towards the use of semantics is the lack of background knowledge. Dealing with this problem has turned out to be a very difficult task because on the one hand the background knowledge should be very large and virtually unbound and, on the other hand, it should be context sensitive and able to capture the diversity of the world, for instance in terms of language and knowledge. Our proposed solution consists in addressing the problem in three steps: (1) create an extensible diversity-aware knowledge base providing a continuously growing quantity of properly organized knowledge; (2) given the problem, build at run-time the proper context within which perform the reasoning; (3) solve the problem. Our work is based on two key ideas. The first is that of using domains, i.e. a general semantic-aware methodology and technique for structuring the background knowledge. The second is that of building the context of reasoning by a suitable combination of domains. Our goal in this paper is to introduce the overall approach, show how it can be applied to an important use case, i.e. the matching of classifications, and describe our first steps towards the construction of a large scale diversity-aware knowledge base.
    Content
    Also in: Journal of Web Semantics, special issue on Reasoning with Context in the Semantic Web, April 2012.
  14. Mayr, P.; Zapilko, B.; Sure, Y.: ¬Ein Mehr-Thesauri-Szenario auf Basis von SKOS und Crosskonkordanzen (2010) 0.03
    0.032539587 = product of:
      0.08134896 = sum of:
        0.05304678 = weight(_text_:semantic in 3392) [ClassicSimilarity], result of:
          0.05304678 = score(doc=3392,freq=2.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.2756298 = fieldWeight in 3392, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.046875 = fieldNorm(doc=3392)
        0.028302183 = product of:
          0.056604367 = sum of:
            0.056604367 = weight(_text_:web in 3392) [ClassicSimilarity], result of:
              0.056604367 = score(doc=3392,freq=6.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.37471575 = fieldWeight in 3392, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3392)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Im August 2009 wurde SKOS "Simple Knowledge Organization System" als neuer Standard für web-basierte kontrollierte Vokabulare durch das W3C veröffentlicht1. SKOS dient als Datenmodell, um kontrollierte Vokabulare über das Web anzubieten sowie technisch und semantisch interoperabel zu machen. Perspektivisch kann die heterogene Landschaft der Erschließungsvokabulare über SKOS vereinheitlicht und vor allem die Inhalte der klassischen Datenbanken (Bereich Fachinformation) für Anwendungen des Semantic Web, beispielsweise als Linked Open Data2 (LOD), zugänglich und stär-ker miteinander vernetzt werden. Vokabulare im SKOS-Format können dabei eine relevante Funktion einnehmen, indem sie als standardisiertes Brückenvokabular dienen und semantische Verlinkung zwischen erschlossenen, veröffentlichten Daten herstellen. Die folgende Fallstudie skizziert ein Szenario mit drei thematisch verwandten Thesauri, die ins SKOS-Format übertragen und inhaltlich über Crosskonkordanzen aus dem Projekt KoMoHe verbunden werden. Die Mapping Properties von SKOS bieten dazu standardisierte Relationen, die denen der Crosskonkordanzen entsprechen. Die beteiligten Thesauri der Fallstudie sind a) TheSoz (Thesaurus Sozialwissenschaften, GESIS), b) STW (Standard-Thesaurus Wirtschaft, ZBW) und c) IBLK-Thesaurus (SWP).
  15. Bandholtz, T.; Schulte-Coerne, T.; Glaser, R.; Fock, J.; Keller, T.: iQvoc - open source SKOS(XL) maintenance and publishing tool (2010) 0.03
    0.032380622 = product of:
      0.08095156 = sum of:
        0.06188791 = weight(_text_:semantic in 604) [ClassicSimilarity], result of:
          0.06188791 = score(doc=604,freq=2.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.32156807 = fieldWeight in 604, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0546875 = fieldNorm(doc=604)
        0.019063652 = product of:
          0.038127303 = sum of:
            0.038127303 = weight(_text_:web in 604) [ClassicSimilarity], result of:
              0.038127303 = score(doc=604,freq=2.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.25239927 = fieldWeight in 604, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=604)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Source
    Proceedings of the Sixth Workshop on Scripting and Development for the Semantic Web, Crete, Greece, May 31, 2010, CEUR Workshop Proceedings, SFSW - http://ceur-ws.org/Vol-699/Paper2.pdf
  16. Wicaksana, I.W.S.; Wahyudi, B.: Comparison Latent Semantic and WordNet approach for semantic similarity calculation (2011) 0.03
    0.027677117 = product of:
      0.13838558 = sum of:
        0.13838558 = weight(_text_:semantic in 689) [ClassicSimilarity], result of:
          0.13838558 = score(doc=689,freq=10.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.71904814 = fieldWeight in 689, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0546875 = fieldNorm(doc=689)
      0.2 = coord(1/5)
    
    Abstract
    Information exchange among many sources in Internet is more autonomous, dynamic and free. The situation drive difference view of concepts among sources. For example, word 'bank' has meaning as economic institution for economy domain, but for ecology domain it will be defined as slope of river or lake. In this paper, we will evaluate latent semantic and WordNet approach to calculate semantic similarity. The evaluation will be run for some concepts from different domain with reference by expert or human. Result of the evaluation can provide a contribution for mapping of concept, query rewriting, interoperability, etc.
    Object
    Latent semantic indexing
  17. Tudhope, D.; Binding, C.: Mapping between linked data vocabularies in ARIADNE (2015) 0.03
    0.02538514 = product of:
      0.063462846 = sum of:
        0.04420565 = weight(_text_:semantic in 2250) [ClassicSimilarity], result of:
          0.04420565 = score(doc=2250,freq=2.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.22969149 = fieldWeight in 2250, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2250)
        0.019257195 = product of:
          0.03851439 = sum of:
            0.03851439 = weight(_text_:web in 2250) [ClassicSimilarity], result of:
              0.03851439 = score(doc=2250,freq=4.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.25496176 = fieldWeight in 2250, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2250)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Semantic Enrichment Enabling Sustainability of Archaeological Links (SENESCHAL) was a project coordinated by the Hypermedia Research Unit at the University of South Wales. The project aims included widening access to key vocabulary resources. National cultural heritage thesauri and vocabularies are used by both national organizations and local authority Historic Environment Records and could potentially act as vocabulary hubs for the Web of Data. Following completion, a set of prominent UK archaeological thesauri and vocabularies is now freely available as Linked Open Data (LOD) via http://www.heritagedata.org - together with open source web services and user interface controls. This presentation will reflect on work done to date for the ARIADNE FP7 infrastructure project (http://www.ariadne-infrastructure.eu) mapping between archaeological vocabularies in different languages and the utility of a hub architecture. The poly-hierarchical structure of the Getty Art & Architecture Thesaurus (AAT) was extracted for use as an example mediating structure to interconnect various multilingual vocabularies originating from ARIADNE data providers. Vocabulary resources were first converted to a common concept-based format (SKOS) and the concepts were then manually mapped to nodes of the extracted AAT structure using some judgement on the meaning of terms and scope notes. Results are presented along with reflections on the wider application to existing European archaeological vocabularies and associated online datasets.
  18. Mitchell, J.S.; Panzer, M.: Dewey linked data : Making connections with old friends and new acquaintances (2012) 0.02
    0.023129018 = product of:
      0.057822544 = sum of:
        0.04420565 = weight(_text_:semantic in 305) [ClassicSimilarity], result of:
          0.04420565 = score(doc=305,freq=2.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.22969149 = fieldWeight in 305, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=305)
        0.013616893 = product of:
          0.027233787 = sum of:
            0.027233787 = weight(_text_:web in 305) [ClassicSimilarity], result of:
              0.027233787 = score(doc=305,freq=2.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.18028519 = fieldWeight in 305, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=305)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    This paper explores the history, uses cases, and future plans associated with availability of the Dewey Decimal Classification (DDC) system as linked data. Parts of the Dewey Decimal Classification (DDC) system have been available as linked data since 2009. Initial efforts included the DDC Summaries (the top three levels of the DDC) in eleven languages exposed as linked data in dewey.info. In 2010, the content of dewey.info was further extended by the addition of assignable numbers and captions from the Abridged Edition 14 data files in English, Italian, and Vietnamese. During 2012, we will add assignable numbers and captions from the latest full edition database, DDC 23. In addition to the "old friends" of different Dewey language versions, institutions such as the British Library and Deutsche Nationalbibliothek have made use of Dewey linked data in bibliographic records and authority files, and AGROVOC has linked to our data at a general level. We expect to extend our linked data network shortly to "new acquaintances" such as GeoNames, ISO 639-3 language codes, and Mathematics Subject Classification. In particular, we will examine the linking process to GeoNames as an example of cross-domain vocabulary alignment. In addition to linking plans, we report on use cases that facilitate machine-assisted categorization and support discovery in the Semantic Web environment.
  19. Slavic, A.: Mapping intricacies : UDC to DDC (2010) 0.02
    0.017182693 = product of:
      0.042956732 = sum of:
        0.011698613 = weight(_text_:retrieval in 3370) [ClassicSimilarity], result of:
          0.011698613 = score(doc=3370,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.08355226 = fieldWeight in 3370, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.01953125 = fieldNorm(doc=3370)
        0.031258117 = weight(_text_:semantic in 3370) [ClassicSimilarity], result of:
          0.031258117 = score(doc=3370,freq=4.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.16241641 = fieldWeight in 3370, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.01953125 = fieldNorm(doc=3370)
      0.4 = coord(2/5)
    
    Content
    Another challenge appears when, e.g., mapping Dewey class 890 Literatures of other specific languages and language families, which does not make sense in UDC in which all languages and literatures have equal status. Standard UDC schedules do not have a selection of preferred literatures and other literatures. In principle, UDC does not allow classes entitled 'others' which do not have defined semantic content. If entities are subdivided and there is no provision for an item outside the listed subclasses then this item is subsumed to a top class or a broader class where all unspecifiied or general members of that class may be expected. If specification is needed this can be divised by adding an alphabetical extension to the broader class. Here we have to find and list in the UDC Summary all literatures that are 'unpreferred' i.e. lumped in the 890 classes and map them again as many-to-one specific-to-broader match. The example below illustrates another interesting case. Classes Dewey 061 and UDC 06 cover roughy the same semantic field but in the subdivision the Dewey Summaries lists a combination of subject and place and as an enumerative classification, provides ready made numbers for combinations of place that are most common in an average (American?) library. This is a frequent approach in the schemes created with the physical book arrangement, i.e. library schelves, in mind. UDC, designed as an indexing language for information retrieval, keeps subject and place in separate tables and allows for any concept of place such as, e.g. (7) North America to be used in combination with any subject as these may coincide in documents. Thus combinations such as Newspapers in North America, or Organizations in North America would not be offered as ready made combinations. There is no selection of 'preferred' or 'most needed countries' or languages or cultures in the standard UDC edition: <Tabelle>
  20. Balakrishnan, U.; Voß, J.: ¬The Cocoda mapping tool (2015) 0.01
    0.014176684 = product of:
      0.03544171 = sum of:
        0.016378058 = weight(_text_:retrieval in 4205) [ClassicSimilarity], result of:
          0.016378058 = score(doc=4205,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.11697317 = fieldWeight in 4205, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4205)
        0.019063652 = product of:
          0.038127303 = sum of:
            0.038127303 = weight(_text_:web in 4205) [ClassicSimilarity], result of:
              0.038127303 = score(doc=4205,freq=8.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.25239927 = fieldWeight in 4205, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4205)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Since the 90s, we have seen an explosion of information and with it there is an increase in the need for data and information aggregation systems that store and manage information. However, most of the information sources apply different Knowledge Organizations Systems (KOS) to describe the content of stored data. This heterogeneous mix of KOS in different systems complicate access and seamless sharing of information and knowledge. Concordances also known as cross-concordances or terminology mappings map different (KOS) to each other for improvement of information retrieval in such heterogeneous mix of systems. (Mayr 2010, Keil 2012). Also for coherent indexing with different terminologies, mappings are considered to be a valuable and essential working tool. However, despite efforts at standardization (e.g. SKOS, ISO 25964-2, Keil 2012, Soergel 2011); there is a significant scarcity of concordances that has led an inability to establish uniform exchange formats as well as methods and tools for maintaining mappings and making them easily accessible. This is particularly true in the field of library classification schemes. In essence, there is a lack of infrastructure for provision/exchange of concordances, their management and quality assessment as well as tools that would enable semi-automatic generation of mappings. The project "coli-conc" therefore aims to address this gap by creating the necessary infrastructure. This includes the specification of a data format for exchange of concordances (JSKOS), specification and implementation of web APIs to query concordance databases (JSKOS-API), and a modular web application to enable uniform access to knowledge organization systems, concordances and concordance assessments (Cocoda).
    The focus of the project "coli-conc" lies in semi-automatic creation of mappings between different KOS in general and the two important library classification schemes in particular - Dewey classification system (DDC) and Regensburg classification system (RVK). In the year 2000, the national libraries of Germany, Austria and Switzerland adopted DDC in an endeavor to develop a nation-wide classification scheme. But historically, in the German speaking regions, the academic libraries have been using their own home-grown systems, the most prominent and popular being the RVK. However, with the launch of DDC, building concordances between DDC and RVK has become an imperative, although it is still rare. The delay in building comprehensive concordances between these two systems has been because of major challenges posed by the sheer largeness of these two systems (38.000 classes in DDC and ca. 860.000 classes in RVK), the strong disparity in their respective structure, the variation in the perception and representation of the concepts. The challenge is compounded geometrically for any manual attempt in this direction. Although there have been efforts on automatic mappings (OAEI Library Track 2012 -- 2014 and e.g. Pfeffer 2013) in the recent years; such concordances carry the risks of inaccurate mappings, and the approaches are rather more suitable for mapping suggestions than for automatic generation of concordances (Lauser 2008; Reiner 2010). The project "coli-conc" will facilitate the creation, evaluation, and reuse of mappings with a public collection of concordances and a web application of mapping management. The proposed presentation will give an introduction to the tools and standards created and planned in the project "coli-conc". This includes preliminary work on DDC concordances (Balakrishnan 2013), an overview of the software concept, technical architecture (Voß 2015) and a demonstration of the Cocoda web application.