Search (64 results, page 2 of 4)

  • × theme_ss:"Semantische Interoperabilität"
  • × type_ss:"el"
  1. BARTOC : the BAsel Register of Thesauri, Ontologies & Classifications 0.00
    0.0044959965 = product of:
      0.031471975 = sum of:
        0.024409214 = weight(_text_:web in 1734) [ClassicSimilarity], result of:
          0.024409214 = score(doc=1734,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.25239927 = fieldWeight in 1734, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1734)
        0.0070627616 = weight(_text_:information in 1734) [ClassicSimilarity], result of:
          0.0070627616 = score(doc=1734,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13576832 = fieldWeight in 1734, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1734)
      0.14285715 = coord(2/14)
    
    Abstract
    BARTOC, http://bartoc.org, is a bibliographic database that provides metadata of as many Knowledge Organization Systems (KOS) as possible and offers a faceted, responsive web design search interface in 20 languages. With more than 1100 interdisciplinary items (Thesauri, Ontologies, Classifications, Glossaries, Controlled Vocabularies, Taxonomies) in 70 languages, BARTOC is the largest database of its kind, multilingual both by content and features, and will still be growing. Metadata are being enriched with DDC-numbers down to the third level, and subject headings from EuroVoc, the EU's multilingual thesaurus. BARTOC has been developed by the University Library of Basel, Switzerland, and continues in the tradition of library and information science to collect bibliographic records of controlled and structured vocabularies.
  2. Nicholson, D.: Help us make HILT's terminology services useful in your information service (2008) 0.00
    0.0042560585 = product of:
      0.02979241 = sum of:
        0.017435152 = weight(_text_:web in 3654) [ClassicSimilarity], result of:
          0.017435152 = score(doc=3654,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.18028519 = fieldWeight in 3654, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3654)
        0.012357258 = weight(_text_:information in 3654) [ClassicSimilarity], result of:
          0.012357258 = score(doc=3654,freq=12.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.23754507 = fieldWeight in 3654, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3654)
      0.14285715 = coord(2/14)
    
    Abstract
    The JISC-funded HILT project is looking to make contact with staff in information services or projects interested in helping it test and refine its developing terminology services. The project is currently working to create pilot web services that will deliver machine-readable terminology and cross-terminology mappings data likely to be useful to information services wishing to extend or enhance the efficacy of their subject search or browse services. Based on SRW/U, SOAP, and SKOS, the HILT facilities, when fully operational, will permit such services to improve their own subject search and browse mechanisms by using HILT data in a fashion transparent to their users. On request, HILT will serve up machine-processable data on individual subject schemes (broader terms, narrower terms, hierarchy information, preferred and non-preferred terms, and so on) and interoperability data (usually intellectual or automated mappings between schemes, but the architecture allows for the use of other methods) - data that can be used to enhance user services. The project is also developing an associated toolkit that will help service technical staff to embed HILT-related functionality into their services. The primary aim is to serve JISC funded information services or services at JISC institutions, but information services outside the JISC domain may also find the proposed services useful and wish to participate in the test and refine process.
  3. Giunchiglia, F.; Maltese, V.; Dutta, B.: Domains and context : first steps towards managing diversity in knowledge (2011) 0.00
    0.004243123 = product of:
      0.029701859 = sum of:
        0.02465703 = weight(_text_:web in 603) [ClassicSimilarity], result of:
          0.02465703 = score(doc=603,freq=4.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.25496176 = fieldWeight in 603, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=603)
        0.0050448296 = weight(_text_:information in 603) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=603,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 603, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=603)
      0.14285715 = coord(2/14)
    
    Content
    Also in: Journal of Web Semantics, special issue on Reasoning with Context in the Semantic Web, April 2012.
    Imprint
    Trento : University of Trento / Department of Information engineering and Computer Science
  4. Vizine-Goetz, D.; Hickey, C.; Houghton, A.; Thompson, R.: Vocabulary mapping for terminology services (2004) 0.00
    0.0042119347 = product of:
      0.029483542 = sum of:
        0.020922182 = weight(_text_:web in 918) [ClassicSimilarity], result of:
          0.020922182 = score(doc=918,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.21634221 = fieldWeight in 918, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=918)
        0.00856136 = weight(_text_:information in 918) [ClassicSimilarity], result of:
          0.00856136 = score(doc=918,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.16457605 = fieldWeight in 918, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=918)
      0.14285715 = coord(2/14)
    
    Abstract
    The paper describes a project to add value to controlled vocabularies by making inter-vocabulary associations. A methodology for mapping terms from one vocabulary to another is presented in the form of a case study applying the approach to the Educational Resources Information Center (ERIC) Thesaurus and the Library of Congress Subject Headings (LCSH). Our approach to mapping involves encoding vocabularies according to Machine-Readable Cataloging (MARC) standards, machine matching of vocabulary terms, and categorizing candidate mappings by likelihood of valid mapping. Mapping data is then stored as machine links. Vocabularies with associations to other schemes will be a key component of Web-based terminology services. The paper briefly describes how the Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) is used to provide access to a vocabulary with mappings.
    Footnote
    Teil eines Themenheftes von: Journal of digital information. 4(2004) no.4.
  5. Panzer, M.: Relationships, spaces, and the two faces of Dewey (2008) 0.00
    0.0042065014 = product of:
      0.029445508 = sum of:
        0.023391712 = weight(_text_:web in 2127) [ClassicSimilarity], result of:
          0.023391712 = score(doc=2127,freq=10.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.24187797 = fieldWeight in 2127, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2127)
        0.0060537956 = weight(_text_:information in 2127) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=2127,freq=8.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 2127, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2127)
      0.14285715 = coord(2/14)
    
    Content
    "When dealing with a large-scale and widely-used knowledge organization system like the Dewey Decimal Classification, we often tend to focus solely on the organization aspect, which is closely intertwined with editorial work. This is perfectly understandable, since developing and updating the DDC, keeping up with current scientific developments, spotting new trends in both scholarly communication and popular publishing, and figuring out how to fit those patterns into the structure of the scheme are as intriguing as they are challenging. From the organization perspective, the intended user of the scheme is mainly the classifier. Dewey acts very much as a number-building engine, providing richly documented concepts to help with classification decisions. Since the Middle Ages, quasi-religious battles have been fought over the "valid" arrangement of places according to specific views of the world, as parodied by Jorge Luis Borges and others. Organizing knowledge has always been primarily an ontological activity; it is about putting the world into the classification. However, there is another side to this coin--the discovery side. While the hierarchical organization of the DDC establishes a default set of places and neighborhoods that is also visible in the physical manifestation of library shelves, this is just one set of relationships in the DDC. A KOS (Knowledge Organization System) becomes powerful by expressing those other relationships in a manner that not only collocates items in a physical place but in a knowledge space, and exposes those other relationships in ways beneficial and congenial to the unique perspective of an information seeker.
    What are those "other" relationships that Dewey possesses and that seem so important to surface? Firstly, there is the relationship of concepts to resources. Dewey has been used for a long time, and over 200,000 numbers are assigned to information resources each year and added to WorldCat by the Library of Congress and the German National Library alone. Secondly, we have relationships between concepts in the scheme itself. Dewey provides a rich set of non-hierarchical relations, indicating other relevant and related subjects across disciplinary boundaries. Thirdly, perhaps most importantly, there is the relationship between the same concepts across different languages. Dewey has been translated extensively, and current versions are available in French, German, Hebrew, Italian, Spanish, and Vietnamese. Briefer representations of the top-three levels (the DDC Summaries) are available in several languages in the DeweyBrowser. This multilingual nature of the scheme allows searchers to access a broader range of resources or to switch the language of--and thus localize--subject metadata seamlessly. MelvilClass, a Dewey front-end developed by the German National Library for the German translation, could be used as a common interface to the DDC in any language, as it is built upon the standard DDC data format. It is not hard to give an example of the basic terminology of a class pulled together in a multilingual way: <class/794.8> a skos:Concept ; skos:notation "794.8"^^ddc:notation ; skos:prefLabel "Computer games"@en ; skos:prefLabel "Computerspiele"@de ; skos:prefLabel "Jeux sur ordinateur"@fr ; skos:prefLabel "Juegos por computador"@es .
    Expressed in such manner, the Dewey number provides a language-independent representation of a Dewey concept, accompanied by language-dependent assertions about the concept. This information, identified by a URI, can be easily consumed by semantic web agents and used in various metadata scenarios. Fourthly, as we have seen, it is important to play well with others, i.e., establishing and maintaining relationships to other KOS and making the scheme available in different formats. As noted in the Dewey blog post "Tags and Dewey," since no single scheme is ever going to be the be-all, end-all solution for knowledge discovery, DDC concepts have been extensively mapped to other vocabularies and taxonomies, sometimes bridging them and acting as a backbone, sometimes using them as additional access vocabulary to be able to do more work "behind the scenes." To enable other applications and schemes to make use of those relationships, the full Dewey database is available in XML format; RDF-based formats and a web service are forthcoming. Pulling those relationships together under a common surface will be the next challenge going forward. In the semantic web community the concept of Linked Data (http://en.wikipedia.org/wiki/Linked_Data) currently receives some attention, with its emphasis on exposing and connecting data using technologies like URIs, HTTP and RDF to improve information discovery on the web. With its focus on relationships and discovery, it seems that Dewey will be well prepared to become part of this big linked data set. Now it is about putting the classification back into the world!"
    Theme
    Semantic Web
  6. Mayr, P.; Petras, V.: Cross-concordances : terminology mapping and its effectiveness for information retrieval (2008) 0.00
    0.00406575 = product of:
      0.028460251 = sum of:
        0.0104854815 = weight(_text_:information in 2323) [ClassicSimilarity], result of:
          0.0104854815 = score(doc=2323,freq=6.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.20156369 = fieldWeight in 2323, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2323)
        0.01797477 = weight(_text_:retrieval in 2323) [ClassicSimilarity], result of:
          0.01797477 = score(doc=2323,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.20052543 = fieldWeight in 2323, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=2323)
      0.14285715 = coord(2/14)
    
    Abstract
    The German Federal Ministry for Education and Research funded a major terminology mapping initiative, which found its conclusion in 2007. The task of this terminology mapping initiative was to organize, create and manage 'cross-concordances' between controlled vocabularies (thesauri, classification systems, subject heading lists) centred around the social sciences but quickly extending to other subject areas. 64 crosswalks with more than 500,000 relations were established. In the final phase of the project, a major evaluation effort to test and measure the effectiveness of the vocabulary mappings in an information system environment was conducted. The paper reports on the cross-concordance work and evaluation results.
    Content
    Beitrag während: World library and information congress: 74th IFLA general conference and council, 10-14 August 2008, Québec, Canada.
  7. Mayr, P.; Petras, V.: Crosskonkordanzen : Terminologie Mapping und deren Effektivität für das Information Retrieval 0.00
    0.004004761 = product of:
      0.028033325 = sum of:
        0.0070627616 = weight(_text_:information in 1996) [ClassicSimilarity], result of:
          0.0070627616 = score(doc=1996,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13576832 = fieldWeight in 1996, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1996)
        0.020970564 = weight(_text_:retrieval in 1996) [ClassicSimilarity], result of:
          0.020970564 = score(doc=1996,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.23394634 = fieldWeight in 1996, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1996)
      0.14285715 = coord(2/14)
    
  8. Ledl, A.: Demonstration of the BAsel Register of Thesauri, Ontologies & Classifications (BARTOC) (2015) 0.00
    0.0038537113 = product of:
      0.026975978 = sum of:
        0.020922182 = weight(_text_:web in 2038) [ClassicSimilarity], result of:
          0.020922182 = score(doc=2038,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.21634221 = fieldWeight in 2038, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2038)
        0.0060537956 = weight(_text_:information in 2038) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=2038,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 2038, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2038)
      0.14285715 = coord(2/14)
    
    Abstract
    The BAsel Register of Thesauri, Ontologies & Classifications (BARTOC, http://bartoc.org) is a bibliographic database aiming to record metadata of as many Knowledge Organization Systems as possible. It has a facetted, responsive web design search interface in 20 EU languages. With more than 1'300 interdisciplinary items in 77 languages, BARTOC is the largest database of its kind, multilingual both by content and features, and it is still growing. This being said, the demonstration of BARTOC would be suitable for topic nr. 10 [Multilingual and Interdisciplinary KOS applications and tools]. BARTOC has been developed by the University Library of Basel, Switzerland. It is rooted in the tradition of library and information science of collecting bibliographic records of controlled and structured vocabularies, yet in a more contemporary manner. BARTOC is based on the open source content management system Drupal 7.
  9. Nicholson, D.: High-Level Thesaurus (HILT) project : interoperability and cross-searching distributed services (200?) 0.00
    0.0036728554 = product of:
      0.051419973 = sum of:
        0.051419973 = weight(_text_:wide in 5966) [ClassicSimilarity], result of:
          0.051419973 = score(doc=5966,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.3916274 = fieldWeight in 5966, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0625 = fieldNorm(doc=5966)
      0.071428575 = coord(1/14)
    
    Abstract
    My presentation is about the HILT, High Level Thesaurus Project, which is looking, very roughly speaking, at how we might deal with interoperability problems relating to cross-searching distributed services by subject. The aims of HILT are to study and report on the problem of cross-searching and browsing by subject across a range of communities, services, and service or resource types in the UK given the wide range of subject schemes and associated practices in place
  10. Kaczmarek, M.; Kruk, S.R.; Gzella, A.: Collaborative building of controlled vocabulary crosswalks (2007) 0.00
    0.0035099457 = product of:
      0.02456962 = sum of:
        0.017435152 = weight(_text_:web in 543) [ClassicSimilarity], result of:
          0.017435152 = score(doc=543,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.18028519 = fieldWeight in 543, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=543)
        0.0071344664 = weight(_text_:information in 543) [ClassicSimilarity], result of:
          0.0071344664 = score(doc=543,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13714671 = fieldWeight in 543, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=543)
      0.14285715 = coord(2/14)
    
    Abstract
    One of the main features of classic libraries is metadata, which also is the key aspect of the Semantic Web. Librarians in the process of resources annotation use different kinds of Knowledge Organization Systems; KOS range from controlled vocabularies to classifications and categories (e.g., taxonomies) and to relationship lists (e.g., thesauri). The diversity of controlled vocabularies, used by various libraries and organizations, became a bottleneck for efficient information exchange between different entities. Even though a simple one-to-one mapping could be established, based on the similarities between names of concepts, we cannot derive information about the hierarchy between concepts from two different KOS. One of the solutions to this problem is to create an algorithm based on data delivered by large community of users using many classification schemata at once. The rationale behind it is that similar resources can be described by equivalent concepts taken from different taxonomies. The more annotations are collected, the more precise the result of this crosswalk will be.
  11. Si, L.E.; O'Brien, A.; Probets, S.: Integration of distributed terminology resources to facilitate subject cross-browsing for library portal systems (2009) 0.00
    0.003446667 = product of:
      0.024126668 = sum of:
        0.017435152 = weight(_text_:web in 3628) [ClassicSimilarity], result of:
          0.017435152 = score(doc=3628,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.18028519 = fieldWeight in 3628, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3628)
        0.0066915164 = product of:
          0.020074548 = sum of:
            0.020074548 = weight(_text_:22 in 3628) [ClassicSimilarity], result of:
              0.020074548 = score(doc=3628,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.19345059 = fieldWeight in 3628, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3628)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Abstract
    Purpose: To develop a prototype middleware framework between different terminology resources in order to provide a subject cross-browsing service for library portal systems. Design/methodology/approach: Nine terminology experts were interviewed to collect appropriate knowledge to support the development of a theoretical framework for the research. Based on this, a simplified software-based prototype system was constructed incorporating the knowledge acquired. The prototype involved mappings between the computer science schedule of the Dewey Decimal Classification (which acted as a spine) and two controlled vocabularies UKAT and ACM Computing Classification. Subsequently, six further experts in the field were invited to evaluate the prototype system and provide feedback to improve the framework. Findings: The major findings showed that given the large variety of terminology resources distributed on the web, the proposed middleware service is essential to integrate technically and semantically the different terminology resources in order to facilitate subject cross-browsing. A set of recommendations are also made outlining the important approaches and features that support such a cross browsing middleware service.
    Content
    This paper is a pre-print version presented at the ISKO UK 2009 conference, 22-23 June, prior to peer review and editing. For published proceedings see special issue of Aslib Proceedings journal.
  12. Dextre Clarke, S.G.: Overview of ISO NP 25964 : structured vocabularies for information retrieval (2007) 0.00
    0.0034326524 = product of:
      0.024028566 = sum of:
        0.0060537956 = weight(_text_:information in 535) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=535,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 535, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=535)
        0.01797477 = weight(_text_:retrieval in 535) [ClassicSimilarity], result of:
          0.01797477 = score(doc=535,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.20052543 = fieldWeight in 535, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=535)
      0.14285715 = coord(2/14)
    
  13. Angjeli, A.; Isaac, A.: Semantic web and vocabularies interoperability : an experiment with illuminations collections (2008) 0.00
    0.0033944983 = product of:
      0.023761487 = sum of:
        0.019725623 = weight(_text_:web in 2324) [ClassicSimilarity], result of:
          0.019725623 = score(doc=2324,freq=4.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.2039694 = fieldWeight in 2324, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=2324)
        0.0040358636 = weight(_text_:information in 2324) [ClassicSimilarity], result of:
          0.0040358636 = score(doc=2324,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.0775819 = fieldWeight in 2324, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=2324)
      0.14285715 = coord(2/14)
    
    Abstract
    During the years 2006 and 2007, the BnF has collaborated with the National Library of the Netherlands within the framework of the Dutch project STITCH. This project, through concrete experiments, investigates semantic interoperability, especially in relation to searching. How can we conduct semantic searches across several digital heritage collections? The metadata related to content analysis are often heterogeneous. Beyond using manual mapping of semantically similar entities, STITCH explores the techniques of the semantic web, particularly ontology mapping. This paper is about an experiment made on two digital iconographic collections: Mandragore, iconographic database of the Manuscript Department of the BnF, and the Medieval Illuminated manuscripts collection of the KB. While the content of these two collections is similar, they have been processed differently and the vocabularies used to index their content is very different. Vocabularies in Mandragore and Iconclass are both controlled and hierarchical but they do not have the same semantic and structure. This difference is of particular interest to the STITCH project, as it aims to study automatic alignment of two vocabularies. The collaborative experiment started with a precise analysis of each of the vocabularies; that included concepts and their representation, lexical properties of the terms used, semantic relationships, etc. The team of Dutch researchers then studied and implemented mechanisms of alignment of the two vocabularies. The initial models being different, there had to be a common standard in order to enable procedures of alignment. RDF and SKOS were selected for that. The experiment lead to building a prototype that allows for querying in both databases at the same time through a single interface. The descriptors of each vocabulary are used as search terms for all images regardless of the collection they belong to. This experiment is only one step in the search for solutions that aim at making navigation easier between heritage collections that have heterogeneous metadata.
    Content
    Beitrag während: World library and information congress: 74th IFLA general conference and council, 10-14 August 2008, Québec, Canada.
  14. Kempf, A.O.; Neubert, J.; Faden, M.: ¬The missing link : a vocabulary mapping effort in economics (2015) 0.00
    0.003211426 = product of:
      0.022479981 = sum of:
        0.017435152 = weight(_text_:web in 2251) [ClassicSimilarity], result of:
          0.017435152 = score(doc=2251,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.18028519 = fieldWeight in 2251, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2251)
        0.0050448296 = weight(_text_:information in 2251) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=2251,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 2251, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2251)
      0.14285715 = coord(2/14)
    
    Abstract
    In economics there exists an internationally established classification system. Research literature is usually classified according to the JEL classification codes, a classification system originated by the Journal of Economic Literature and published by the American Economic Association (AEA). Complementarily to keywords which are usually assigned freely, economists widely use the JEL codes when classifying their publications. In cooperation with KU Leuven, ZBW - Leibniz Information Centre for Economics has published an unofficial multilingual version of JEL in SKOS format. In addition to this, exists the STW Thesaurus for Economics a bilingual domain-specific controlled vocabulary maintained by the German National Library of Economics (ZBW). Developed in the mid-1990s and since then constantly updated according to the current terminology usage in the latest international research literature in economics it covers all sub-fields both in the economics as well as in business economics and business practice containing subject headings which are clearly delimited from each other. It has been published on the web as Linked Open Data in the year 2009.
  15. Doerr, M.: Semantic problems of thesaurus mapping (2001) 0.00
    0.0031590632 = product of:
      0.02211344 = sum of:
        0.0071344664 = weight(_text_:information in 5902) [ClassicSimilarity], result of:
          0.0071344664 = score(doc=5902,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13714671 = fieldWeight in 5902, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5902)
        0.014978974 = weight(_text_:retrieval in 5902) [ClassicSimilarity], result of:
          0.014978974 = score(doc=5902,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.16710453 = fieldWeight in 5902, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5902)
      0.14285715 = coord(2/14)
    
    Abstract
    With networked information access to heterogeneous data sources, the problem of terminology provision and interoperability of controlled vocabulary schemes such as thesauri becomes increasingly urgent. Solutions are needed to improve the performance of full-text retrieval systems and to guide the design of controlled terminology schemes for use in structured data, including metadata. Thesauri are created in different languages, with different scope and points of view and at different levels of abstraction and detail, to accomodate access to a specific group of collections. In any wider search accessing distributed collections, the user would like to start with familiar terminology and let the system find out the correspondences to other terminologies in order to retrieve equivalent results from all addressed collections. This paper investigates possible semantic differences that may hinder the unambiguous mapping and transition from one thesaurus to another. It focusses on the differences of meaning of terms and their relations as intended by their creators for indexing and querying a specific collection, in contrast to methods investigating the statistical relevance of terms for objects in a collection. It develops a notion of optimal mapping, paying particular attention to the intellectual quality of mappings between terms from different vocabularies and to problems of polysemy. Proposals are made to limit the vagueness introduced by the transition from one vocabulary to another. The paper shows ways in which thesaurus creators can improve their methodology to meet the challenges of networked access of distributed collections created under varying conditions. For system implementers, the discussion will lead to a better understanding of the complexity of the problem
    Source
    Journal of digital information. 1(2001) no.8,
  16. Bastos Vieira, S.; DeBrito, M.; Mustafa El Hadi, W.; Zumer, M.: Developing imaged KOS with the FRSAD Model : a conceptual methodology (2016) 0.00
    0.003124141 = product of:
      0.021868985 = sum of:
        0.009885807 = weight(_text_:information in 3109) [ClassicSimilarity], result of:
          0.009885807 = score(doc=3109,freq=12.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.19003606 = fieldWeight in 3109, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=3109)
        0.0119831795 = weight(_text_:retrieval in 3109) [ClassicSimilarity], result of:
          0.0119831795 = score(doc=3109,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.13368362 = fieldWeight in 3109, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=3109)
      0.14285715 = coord(2/14)
    
    Abstract
    This proposal presents the methodology of indexing with images suggested by De Brito and Caribé (2015). The imagetic model is used as a compatible mechanism with FRSAD for a global information share and use of subject data, both within the library sector and beyond. The conceptual model of imagetic indexing shows how images are related to topics and 'key-images' are interpreted as nomens to implement the FRSAD model. Indexing with images consists of using images instead of key-words or descriptors, to represent and organize information. Implementing the imaged navigation in OPACs denotes multiple advantages derived from this rethinking the OPAC anew, since we are looking forward to sharing concepts within the subject authority data. Images, carrying linguistic objects, permeate inter-social and cultural concepts. In practice it includes translated metadata, symmetrical multilingual thesaurus, or any traditional indexing tools. iOPAC embodies efforts focused on conceptual levels as expected from librarians. Imaged interfaces are more intuitive since users do not need specific training for information retrieval, offering easier comprehension of indexing codes, larger conceptual portability of descriptors (as images), and a better interoperability between discourse codes and indexing competences affecting positively social and cultural interoperability. The imagetic methodology deploys R&D fields for more suitable interfaces taking into consideration users with specific needs such as deafness and illiteracy. This methodology arouse questions about the paradigms of the primacy of orality in information systems and pave the way to a legitimacy of multiple perspectives in document indexing by suggesting a more universal communication system based on images. Interdisciplinarity in neurosciences, linguistics and information sciences would be desirable competencies for further investigations about he nature of cognitive processes in information organization and classification while developing assistive KOS for individuals with communication problems, such autism and deafness.
  17. Heckner, M.; Mühlbacher, S.; Wolff, C.: Tagging tagging : a classification model for user keywords in scientific bibliography management systems (2007) 0.00
    0.00299752 = product of:
      0.020982638 = sum of:
        0.0040358636 = weight(_text_:information in 533) [ClassicSimilarity], result of:
          0.0040358636 = score(doc=533,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.0775819 = fieldWeight in 533, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=533)
        0.016946774 = weight(_text_:retrieval in 533) [ClassicSimilarity], result of:
          0.016946774 = score(doc=533,freq=4.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.18905719 = fieldWeight in 533, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=533)
      0.14285715 = coord(2/14)
    
    Abstract
    Recently, a growing amount of systems that allow personal content annotation (tagging) are being created, ranging from personal sites for organising bookmarks (del.icio.us), photos (flickr.com) or videos (video.google.com, youtube.com) to systems for managing bibliographies for scientific research projects (citeulike.org, connotea.org). Simultaneously, a debate on the pro and cons of allowing users to add personal keywords to digital content has arisen. One recurrent point-of-discussion is whether tagging can solve the well-known vocabulary problem: In order to support successful retrieval in complex environments, it is necessary to index an object with a variety of aliases (cf. Furnas 1987). In this spirit, social tagging enhances the pool of rigid, traditional keywording by adding user-created retrieval vocabularies. Furthermore, tagging goes beyond simple personal content-based keywords by providing meta-keywords like funny or interesting that "identify qualities or characteristics" (Golder and Huberman 2006, Kipp and Campbell 2006, Kipp 2007, Feinberg 2006, Kroski 2005). Contrarily, tagging systems are claimed to lead to semantic difficulties that may hinder the precision and recall of tagging systems (e.g. the polysemy problem, cf. Marlow 2006, Lakoff 2005, Golder and Huberman 2006). Empirical research on social tagging is still rare and mostly from a computer linguistics or librarian point-of-view (Voß 2007) which focus either on the automatic statistical analyses of large data sets, or intellectually inspect single cases of tag usage: Some scientists studied the evolution of tag vocabularies and tag distribution in specific systems (Golder and Huberman 2006, Hammond 2005). Others concentrate on tagging behaviour and tagger characteristics in collaborative systems. (Hammond 2005, Kipp and Campbell 2007, Feinberg 2006, Sen 2006). However, little research has been conducted on the functional and linguistic characteristics of tags.1 An analysis of these patterns could show differences between user wording and conventional keywording. In order to provide a reasonable basis for comparison, a classification system for existing tags is needed.
    Therefore our main research questions are as follows: - Is it possible to discover regular patterns in tag usage and to establish a stable category model? - Does a specific tagging language comparable to internet slang or chatspeak evolve? - How do social tags differ from traditional (author / expert) keywords? - To what degree are social tags taken from or findable in the full text of the tagged resource? - Do tags in a research literature context go beyond simple content description (e.g. tags indicating time or task-related information, cf. Kipp et al. 2006)?
  18. Bittner, T.; Donnelly, M.; Winter, S.: Ontology and semantic interoperability (2006) 0.00
    0.002876773 = product of:
      0.02013741 = sum of:
        0.012107591 = weight(_text_:information in 4820) [ClassicSimilarity], result of:
          0.012107591 = score(doc=4820,freq=8.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.23274569 = fieldWeight in 4820, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4820)
        0.008029819 = product of:
          0.024089456 = sum of:
            0.024089456 = weight(_text_:22 in 4820) [ClassicSimilarity], result of:
              0.024089456 = score(doc=4820,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.23214069 = fieldWeight in 4820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4820)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Abstract
    One of the major problems facing systems for Computer Aided Design (CAD), Architecture Engineering and Construction (AEC) and Geographic Information Systems (GIS) applications today is the lack of interoperability among the various systems. When integrating software applications, substantial di culties can arise in translating information from one application to the other. In this paper, we focus on semantic di culties that arise in software integration. Applications may use di erent terminologies to describe the same domain. Even when appli-cations use the same terminology, they often associate di erent semantics with the terms. This obstructs information exchange among applications. To cir-cumvent this obstacle, we need some way of explicitly specifying the semantics for each terminology in an unambiguous fashion. Ontologies can provide such specification. It will be the task of this paper to explain what ontologies are and how they can be used to facilitate interoperability between software systems used in computer aided design, architecture engineering and construction, and geographic information processing.
    Date
    3.12.2016 18:39:22
  19. Haffner, A.: Internationalisierung der GND durch das Semantic Web (2012) 0.00
    0.00275674 = product of:
      0.038594358 = sum of:
        0.038594358 = weight(_text_:web in 318) [ClassicSimilarity], result of:
          0.038594358 = score(doc=318,freq=20.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.39907828 = fieldWeight in 318, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02734375 = fieldNorm(doc=318)
      0.071428575 = coord(1/14)
    
    Abstract
    Seit Bestehen der Menschheit sammelt der Mensch Informationen, seit Bestehen des Internets stellt der Mensch Informationen ins Web, seit Bestehen des Semantic Webs sollen auch Maschinen in die Lage versetzt werden mit diesen Informationen umzugehen. Das Bibliothekswesen ist einer der Sammler. Seit Jahrhunderten werden Kataloge und Bibliografien sowie Inventarnachweise geführt. Mit der Aufgabe des Zettelkatalogs hin zum Onlinekatalog wurde es Benutzern plötzlich möglich in Beständen komfortabel zu suchen. Durch die Bereitstellung von Daten aus dem Bibliothekswesen im Semantic Web sollen nicht nur die eigenen Katalogsysteme Zugriff auf diese Informationen erhalten, sondern jede beliebige Anwendung, die auf das Web zugreifen kann. Darüber hinaus ist die Vorstellung, dass sich die im Web befindenden Daten - in sofern möglich - miteinander verlinken und zu einem gigantischen semantischen Netz werden, das als ein großer Datenpool verwendet werden kann. Die Voraussetzung hierfür ist wie beim Übergang zum Onlinekatalog die Aufbereitung der Daten in einem passenden Format. Normdaten dienen im Bibliothekswesen bereits dazu eine Vernetzung der unterschiedlichen Bestände zu erlauben. Bei der Erschließung eines Buches wird nicht bloß gesagt, dass jemand, der Thomas Mann heißt, der Autor ist - es wird eine Verknüpfung vom Katalogisat zu dem Thomas Mann erzeugt, der am 6. Juni 1875 in Lübeck geboren und am 12. August 1955 in Zürich verstorben ist. Der Vorteil von Normdateneintragungen ist, dass sie zum eindeutigen Nachweis der Verfasserschaft oder Mitwirkung an einem Werk beitragen. Auch stehen Normdateneintragungen bereits allen Bibliotheken für die Nachnutzung bereit - der Schritt ins Semantic Web wäre somit die Öffnung der Normdaten für alle denkbaren Nutzergruppen.
    Die Gemeinsame Normdatei (GND) ist seit April 2012 die Datei, die die im deutschsprachigen Bibliothekswesen verwendeten Normdaten enthält. Folglich muss auf Basis dieser Daten eine Repräsentation für die Darstellung als Linked Data im Semantic Web etabliert werden. Neben der eigentlichen Bereitstellung von GND-Daten im Semantic Web sollen die Daten mit bereits als Linked Data vorhandenen Datenbeständen (DBpedia, VIAF etc.) verknüpft und nach Möglichkeit kompatibel sein, wodurch die GND einem internationalen und spartenübergreifenden Publikum zugänglich gemacht wird. Dieses Dokument dient vor allem zur Beschreibung, wie die GND-Linked-Data-Repräsentation entstand und dem Weg zur Spezifikation einer eignen Ontologie. Hierfür werden nach einer kurzen Einführung in die GND die Grundprinzipien und wichtigsten Standards für die Veröffentlichung von Linked Data im Semantic Web vorgestellt, um darauf aufbauend existierende Vokabulare und Ontologien des Bibliothekswesens betrachten zu können. Anschließend folgt ein Exkurs in das generelle Vorgehen für die Bereitstellung von Linked Data, wobei die so oft zitierte Open World Assumption kritisch hinterfragt und damit verbundene Probleme insbesondere in Hinsicht Interoperabilität und Nachnutzbarkeit aufgedeckt werden. Um Probleme der Interoperabilität zu vermeiden, wird den Empfehlungen der Library Linked Data Incubator Group [LLD11] gefolgt.
    Im Kapitel Anwendungsprofile als Basis für die Ontologieentwicklung wird die Spezifikation von Dublin Core Anwendungsprofilen kritisch betrachtet, um auszumachen wann und in welcher Form sich ihre Verwendung bei dem Vorhaben Bereitstellung von Linked Data anbietet. In den nachfolgenden Abschnitten wird die GND-Ontologie, welche als Standard für die Serialisierung von GND-Daten im Semantic Web dient, samt Modellierungsentscheidungen näher vorgestellt. Dabei wird insbesondere der Technik des Vocabulary Alignment eine prominente Position eingeräumt, da darin ein entscheidender Mechanismus zur Steigerung der Interoperabilität und Nachnutzbarkeit gesehen wird. Auch wird sich mit der Verlinkung zu externen Datensets intensiv beschäftigt. Hierfür wurden ausgewählte Datenbestände hinsichtlich ihrer Qualität und Aktualität untersucht und Empfehlungen für die Implementierung innerhalb des GND-Datenbestandes gegeben. Abschließend werden eine Zusammenfassung und ein Ausblick auf weitere Schritte gegeben.
  20. Mayr, P.; Petras, V.; Walter, A.-K.: Results from a German terminology mapping effort : intra- and interdisciplinary cross-concordances between controlled vocabularies (2007) 0.00
    0.0027524815 = product of:
      0.019267369 = sum of:
        0.012204607 = weight(_text_:web in 542) [ClassicSimilarity], result of:
          0.012204607 = score(doc=542,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.12619963 = fieldWeight in 542, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02734375 = fieldNorm(doc=542)
        0.0070627616 = weight(_text_:information in 542) [ClassicSimilarity], result of:
          0.0070627616 = score(doc=542,freq=8.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13576832 = fieldWeight in 542, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=542)
      0.14285715 = coord(2/14)
    
    Abstract
    In 2004, the German Federal Ministry for Education and Research funded a major terminology mapping initiative at the GESIS Social Science Information Centre in Bonn (GESIS-IZ), which will find its conclusion this year. The task of this terminology mapping initiative was to organize, create and manage 'crossconcordances' between major controlled vocabularies (thesauri, classification systems, subject heading lists) centred around the social sciences but quickly extending to other subject areas. Cross-concordances are intellectually (manually) created crosswalks that determine equivalence, hierarchy, and association relations between terms from two controlled vocabularies. Most vocabularies have been related bilaterally, that is, there is a cross-concordance relating terms from vocabulary A to vocabulary B as well as a cross-concordance relating terms from vocabulary B to vocabulary A (bilateral relations are not necessarily symmetrical). Till August 2007, 24 controlled vocabularies from 11 disciplines will be connected with vocabulary sizes ranging from 2,000 - 17,000 terms per vocabulary. To date more than 260,000 relations are generated. A database including all vocabularies and cross-concordances was built and a 'heterogeneity service' developed, a web service, which makes the cross-concordances available for other applications. Many cross-concordances are already implemented and utilized for the German Social Science Information Portal Sowiport (www.sowiport.de), which searches bibliographical and other information resources (incl. 13 databases with 10 different vocabularies and ca. 2.5 million references).
    In the final phase of the project, a major evaluation effort is under way to test and measure the effectiveness of the vocabulary mappings in an information system environment. Actual user queries are tested in a distributed search environment, where several bibliographic databases with different controlled vocabularies are searched at the same time. Three query variations are compared to each other: a free-text search without focusing on using the controlled vocabulary or terminology mapping; a controlled vocabulary search, where terms from one vocabulary (a 'home' vocabulary thought to be familiar to the user of a particular database) are used to search all databases; and finally, a search, where controlled vocabulary terms are translated into the terms of the respective controlled vocabulary of the database. For evaluation purposes, types of cross-concordances are distinguished between intradisciplinary vocabularies (vocabularies within the social sciences) and interdisciplinary vocabularies (social sciences to other disciplines as well as other combinations). Simultaneously, an extensive quantitative analysis is conducted aimed at finding patterns in terminology mappings that can explain trends in the effectiveness of terminology mappings, particularly looking at overlapping terms, types of determined relations (equivalence, hierarchy etc.), size of participating vocabularies, etc. This project is the largest terminology mapping effort in Germany. The number and variety of controlled vocabularies targeted provide an optimal basis for insights and further research opportunities. To our knowledge, terminology mapping efforts have rarely been evaluated with stringent qualitative and quantitative measures. This research should contribute in this area. For the NKOS workshop, we plan to present an overview of the project and participating vocabularies, an introduction to the heterogeneity service and its application as well as some of the results and findings of the evaluation, which will be concluded in August.

Years

Languages

  • e 55
  • d 7

Types

  • a 20
  • r 2
  • n 1
  • p 1
  • x 1
  • More… Less…