Search (6 results, page 1 of 1)

  • × theme_ss:"Semantisches Umfeld in Indexierung u. Retrieval"
  • × theme_ss:"Wissensrepräsentation"
  • × type_ss:"a"
  1. Hoppe, T.: Semantische Filterung : ein Werkzeug zur Steigerung der Effizienz im Wissensmanagement (2013) 0.02
    0.020860787 = product of:
      0.08344315 = sum of:
        0.08344315 = weight(_text_:open in 2245) [ClassicSimilarity], result of:
          0.08344315 = score(doc=2245,freq=2.0), product of:
            0.20964009 = queryWeight, product of:
              4.5032015 = idf(docFreq=1330, maxDocs=44218)
              0.046553567 = queryNorm
            0.39803052 = fieldWeight in 2245, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.5032015 = idf(docFreq=1330, maxDocs=44218)
              0.0625 = fieldNorm(doc=2245)
      0.25 = coord(1/4)
    
    Source
    Open journal of knowledge management. 2013, Ausgabe VII = http://www.community-of-knowledge.de/beitrag/semantische-filterung-ein-werkzeug-zur-steigerung-der-effizienz-im-wissensmanagement/
  2. Ma, N.; Zheng, H.T.; Xiao, X.: ¬An ontology-based latent semantic indexing approach using long short-term memory networks (2017) 0.01
    0.013037993 = product of:
      0.05215197 = sum of:
        0.05215197 = weight(_text_:open in 3810) [ClassicSimilarity], result of:
          0.05215197 = score(doc=3810,freq=2.0), product of:
            0.20964009 = queryWeight, product of:
              4.5032015 = idf(docFreq=1330, maxDocs=44218)
              0.046553567 = queryNorm
            0.24876907 = fieldWeight in 3810, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.5032015 = idf(docFreq=1330, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3810)
      0.25 = coord(1/4)
    
    Abstract
    Nowadays, online data shows an astonishing increase and the issue of semantic indexing remains an open question. Ontologies and knowledge bases have been widely used to optimize performance. However, researchers are placing increased emphasis on internal relations of ontologies but neglect latent semantic relations between ontologies and documents. They generally annotate instances mentioned in documents, which are related to concepts in ontologies. In this paper, we propose an Ontology-based Latent Semantic Indexing approach utilizing Long Short-Term Memory networks (LSTM-OLSI). We utilize an importance-aware topic model to extract document-level semantic features and leverage ontologies to extract word-level contextual features. Then we encode the above two levels of features and match their embedding vectors utilizing LSTM networks. Finally, the experimental results reveal that LSTM-OLSI outperforms existing techniques and demonstrates deep comprehension of instances and articles.
  3. Knorz, G.; Rein, B.: Semantische Suche in einer Hochschulontologie (2005) 0.01
    0.005518945 = product of:
      0.02207578 = sum of:
        0.02207578 = product of:
          0.04415156 = sum of:
            0.04415156 = weight(_text_:22 in 1852) [ClassicSimilarity], result of:
              0.04415156 = score(doc=1852,freq=2.0), product of:
                0.16302267 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046553567 = queryNorm
                0.2708308 = fieldWeight in 1852, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1852)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    11. 2.2011 18:22:58
  4. Järvelin, K.; Kristensen, J.; Niemi, T.; Sormunen, E.; Keskustalo, H.: ¬A deductive data model for query expansion (1996) 0.00
    0.0047305245 = product of:
      0.018922098 = sum of:
        0.018922098 = product of:
          0.037844196 = sum of:
            0.037844196 = weight(_text_:22 in 2230) [ClassicSimilarity], result of:
              0.037844196 = score(doc=2230,freq=2.0), product of:
                0.16302267 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046553567 = queryNorm
                0.23214069 = fieldWeight in 2230, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2230)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (ACM SIGIR '96), Zürich, Switzerland, August 18-22, 1996. Eds.: H.P. Frei et al
  5. Arenas, M.; Cuenca Grau, B.; Kharlamov, E.; Marciuska, S.; Zheleznyakov, D.: Faceted search over ontology-enhanced RDF data (2014) 0.00
    0.0044317176 = product of:
      0.01772687 = sum of:
        0.01772687 = product of:
          0.03545374 = sum of:
            0.03545374 = weight(_text_:access in 2207) [ClassicSimilarity], result of:
              0.03545374 = score(doc=2207,freq=2.0), product of:
                0.15778996 = queryWeight, product of:
                  3.389428 = idf(docFreq=4053, maxDocs=44218)
                  0.046553567 = queryNorm
                0.22468945 = fieldWeight in 2207, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.389428 = idf(docFreq=4053, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2207)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    An increasing number of applications rely on RDF, OWL2, and SPARQL for storing and querying data. SPARQL, however, is not targeted towards end-users, and suitable query interfaces are needed. Faceted search is a prominent approach for end-user data access, and several RDF-based faceted search systems have been developed. There is, however, a lack of rigorous theoretical underpinning for faceted search in the context of RDF and OWL2. In this paper, we provide such solid foundations. We formalise faceted interfaces for this context, identify a fragment of first-order logic capturing the underlying queries, and study the complexity of answering such queries for RDF and OWL2 profiles. We then study interface generation and update, and devise efficiently implementable algorithms. Finally, we have implemented and tested our faceted search algorithms for scalability, with encouraging results.
  6. Thenmalar, S.; Geetha, T.V.: Enhanced ontology-based indexing and searching (2014) 0.00
    0.0027594725 = product of:
      0.01103789 = sum of:
        0.01103789 = product of:
          0.02207578 = sum of:
            0.02207578 = weight(_text_:22 in 1633) [ClassicSimilarity], result of:
              0.02207578 = score(doc=1633,freq=2.0), product of:
                0.16302267 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046553567 = queryNorm
                0.1354154 = fieldWeight in 1633, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1633)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    20. 1.2015 18:30:22