Search (11 results, page 1 of 1)

  • × theme_ss:"Semantisches Umfeld in Indexierung u. Retrieval"
  • × type_ss:"a"
  • × year_i:[2000 TO 2010}
  1. Boyack, K.W.; Wylie,B.N.; Davidson, G.S.: Information Visualization, Human-Computer Interaction, and Cognitive Psychology : Domain Visualizations (2002) 0.02
    0.019739904 = product of:
      0.09869952 = sum of:
        0.09869952 = weight(_text_:22 in 1352) [ClassicSimilarity], result of:
          0.09869952 = score(doc=1352,freq=4.0), product of:
            0.18038483 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051511593 = queryNorm
            0.54716086 = fieldWeight in 1352, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.078125 = fieldNorm(doc=1352)
      0.2 = coord(1/5)
    
    Date
    22. 2.2003 17:25:39
    22. 2.2003 18:17:40
  2. Sacco, G.M.: Dynamic taxonomies and guided searches (2006) 0.01
    0.013817933 = product of:
      0.069089666 = sum of:
        0.069089666 = weight(_text_:22 in 5295) [ClassicSimilarity], result of:
          0.069089666 = score(doc=5295,freq=4.0), product of:
            0.18038483 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051511593 = queryNorm
            0.38301262 = fieldWeight in 5295, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5295)
      0.2 = coord(1/5)
    
    Date
    22. 7.2006 17:56:22
  3. Weichselgartner, E.: ZPID bindet Thesaurus in Retrievaloberfläche ein (2006) 0.01
    0.010867408 = product of:
      0.054337036 = sum of:
        0.054337036 = weight(_text_:index in 5962) [ClassicSimilarity], result of:
          0.054337036 = score(doc=5962,freq=2.0), product of:
            0.2250935 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.051511593 = queryNorm
            0.24139762 = fieldWeight in 5962, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5962)
      0.2 = coord(1/5)
    
    Abstract
    Seit 3. Juli 2006 stellt das ZPID eine verbesserte Suchoberfläche für die Recherche in der bibliographischen Psychologie-Datenbank PSYNDEX zur Verfügung. Hauptmerkmal der neuen Version 1.1 des 'ZPID-Retrieval für PSYNDEX' ist die Einbindung von 'PSYNDEX Terms', dem kontrollierten Wortschatz der psychologischen Fachsprache. PSYNDEX Terms basiert auf dem 'Thesaurus of Psychological Index Terms' der American Psychological Association (APA) und enthält im Moment über 5.400 Deskriptoren. Zu jedem Deskriptor werden ggf. Oberbegriffe, Unterbegriffe und verwandte Begriffe angezeigt. Wer die Suchoberfläche nutzt, kann entweder im Thesaurus blättern oder gezielt nach Thesaurusbegriffen suchen. Kommt der eigene frei gewählte Suchbegriff nicht im Thesaurus vor, macht das System selbsttätig Vorschläge für passende Thesaurusbegriffe. DerThesaurus ist komplett zweisprachig (deutsch/englisch) implementiert, sodass er auch als Übersetzungshilfe dient. Weitere Verbesserungen der Suchoberfläche betreffen die Darstellbarkeit in unterschiedlichen Web-Browsern mit dem Ziel der Barrierefreiheit, die Erweiterung der OnlineHilfe mit Beispielen für erfolgreiche Suchstrategien, die Möglichkeit, zu speziellen Themen vertiefte Informationen abzurufen (den Anfang machen psychologische Behandlungsprogramme) und die Bereitstellung eines Export-Filters für EndNote. Zielgruppe des ZPID-Retrieval sind Einzelpersonen, die keinen institutionellen PSYNDEX-Zugang, z.B. am Campus einer Universität, nutzen können. Sie können das kostenpflichtige Retrieval direkt online erwerben und werden binnen weniger Minuten freigeschaltet. Kunden mit existierendem Vertrag kommen automatisch in den Genuss der verbesserten Suchoberfläche.
  4. Faaborg, A.; Lagoze, C.: Semantic browsing (2003) 0.01
    0.009770754 = product of:
      0.04885377 = sum of:
        0.04885377 = weight(_text_:22 in 1026) [ClassicSimilarity], result of:
          0.04885377 = score(doc=1026,freq=2.0), product of:
            0.18038483 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051511593 = queryNorm
            0.2708308 = fieldWeight in 1026, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1026)
      0.2 = coord(1/5)
    
    Source
    Research and advanced technology for digital libraries : 7th European Conference, proceedings / ECDL 2003, Trondheim, Norway, August 17-22, 2003
  5. Knorz, G.; Rein, B.: Semantische Suche in einer Hochschulontologie (2005) 0.01
    0.009770754 = product of:
      0.04885377 = sum of:
        0.04885377 = weight(_text_:22 in 1852) [ClassicSimilarity], result of:
          0.04885377 = score(doc=1852,freq=2.0), product of:
            0.18038483 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051511593 = queryNorm
            0.2708308 = fieldWeight in 1852, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1852)
      0.2 = coord(1/5)
    
    Date
    11. 2.2011 18:22:58
  6. Klas, C.-P.; Fuhr, N.; Schaefer, A.: Evaluating strategic support for information access in the DAFFODIL system (2004) 0.01
    0.008374932 = product of:
      0.04187466 = sum of:
        0.04187466 = weight(_text_:22 in 2419) [ClassicSimilarity], result of:
          0.04187466 = score(doc=2419,freq=2.0), product of:
            0.18038483 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051511593 = queryNorm
            0.23214069 = fieldWeight in 2419, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.046875 = fieldNorm(doc=2419)
      0.2 = coord(1/5)
    
    Date
    16.11.2008 16:22:48
  7. Caro Castro, C.; Travieso Rodríguez, C.: Ariadne's thread : knowledge structures for browsing in OPAC's (2003) 0.01
    0.0076071853 = product of:
      0.038035925 = sum of:
        0.038035925 = weight(_text_:index in 2768) [ClassicSimilarity], result of:
          0.038035925 = score(doc=2768,freq=2.0), product of:
            0.2250935 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.051511593 = queryNorm
            0.16897833 = fieldWeight in 2768, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2768)
      0.2 = coord(1/5)
    
    Abstract
    Subject searching is the most common but also the most conflictive searching for end user. The aim of this paper is to check how users expressions match subject headings and to prove if knowledge structure used in online catalogs enhances searching effectiveness. A bibliographic revision about difficulties in subject access and proposed methods to improve it is also presented. For the empirical analysis, transaction logs from two university libraries, online catalogs (CISNE and FAMA) were collected. Results show that more than a quarter of user queries are effective due to an alphabetical subject index approach and browsing through hypertextual links. 1. Introduction Since the 1980's, online public access catalogs (OPAC's) have become usual way to access bibliographic information. During the last two decades the technological development has helped to extend their use, making feasible the access for a whole of users that is getting more and more extensive and heterogeneous, and also to incorporate information resources in electronic formats and to interconnect systems. However, technology seems to have developed faster than our knowledge about the tasks where it has been applied and than the evolution of our capacities for adapting to it. The conceptual model of OPAC has been hardly modified recently, and for interacting with them, users still need to combine the same skills and basic knowledge than at the beginning of its introduction (Borgman, 1986, 2000): a) conceptual knowledge to translate the information need into an appropriate query because of a well-designed mental model of the system, b) semantic and syntactic knowledge to be able to implement that query (access fields, searching type, Boolean logic, etc.) and c) basic technical skills in computing. At present many users have the essential technical skills to make use, with more or less expertise, of a computer. This number is substantially reduced when it is referred to the conceptual, semantic and syntactic knowledge that is necessary to achieve a moderately satisfactory search. An added difficulty arises in subject searching, as users should concrete their unknown information needs in terms that the information retrieval system can understand. Many researches have focused an unskilled searchers' difficulties to enter an effective query. The mental models influence, users assumption about characteristics, structure, contents and operation of the system they interact with have been analysed (Dillon, 2000; Dimitroff, 2000). Another issue that implies difficulties is vocabulary: how to find the right terms to implement a query and to modify it as the case may be. Terminology and expressions characteristics used in searching (Bates, 1993), the match between user terms and the subject headings from the catalog (Carlyle, 1989; Drabensttot, 1996; Drabensttot & Vizine-Goetz, 1994), the incidence of spelling errors (Drabensttot and Weller, 1996; Ferl and Millsap, 1996; Walker and Jones, 1987), users problems
  8. Song, D.; Bruza, P.D.: Towards context sensitive information inference (2003) 0.01
    0.00697911 = product of:
      0.03489555 = sum of:
        0.03489555 = weight(_text_:22 in 1428) [ClassicSimilarity], result of:
          0.03489555 = score(doc=1428,freq=2.0), product of:
            0.18038483 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051511593 = queryNorm
            0.19345059 = fieldWeight in 1428, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1428)
      0.2 = coord(1/5)
    
    Date
    22. 3.2003 19:35:46
  9. Shiri, A.A.; Revie, C.: Query expansion behavior within a thesaurus-enhanced search environment : a user-centered evaluation (2006) 0.01
    0.00697911 = product of:
      0.03489555 = sum of:
        0.03489555 = weight(_text_:22 in 56) [ClassicSimilarity], result of:
          0.03489555 = score(doc=56,freq=2.0), product of:
            0.18038483 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051511593 = queryNorm
            0.19345059 = fieldWeight in 56, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0390625 = fieldNorm(doc=56)
      0.2 = coord(1/5)
    
    Date
    22. 7.2006 16:32:43
  10. Bradford, R.B.: Relationship discovery in large text collections using Latent Semantic Indexing (2006) 0.01
    0.005583288 = product of:
      0.02791644 = sum of:
        0.02791644 = weight(_text_:22 in 1163) [ClassicSimilarity], result of:
          0.02791644 = score(doc=1163,freq=2.0), product of:
            0.18038483 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051511593 = queryNorm
            0.15476047 = fieldWeight in 1163, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.03125 = fieldNorm(doc=1163)
      0.2 = coord(1/5)
    
    Source
    Proceedings of the Fourth Workshop on Link Analysis, Counterterrorism, and Security, SIAM Data Mining Conference, Bethesda, MD, 20-22 April, 2006. [http://www.siam.org/meetings/sdm06/workproceed/Link%20Analysis/15.pdf]
  11. Zhang, J.; Mostafa, J.; Tripathy, H.: Information retrieval by semantic analysis and visualization of the concept space of D-Lib® magazine (2002) 0.01
    0.005433704 = product of:
      0.027168518 = sum of:
        0.027168518 = weight(_text_:index in 1211) [ClassicSimilarity], result of:
          0.027168518 = score(doc=1211,freq=2.0), product of:
            0.2250935 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.051511593 = queryNorm
            0.12069881 = fieldWeight in 1211, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.01953125 = fieldNorm(doc=1211)
      0.2 = coord(1/5)
    
    Abstract
    From the user's perspective, however, it is still difficult to use current information retrieval systems. Users frequently have problems expressing their information needs and translating those needs into queries. This is partly due to the fact that information needs cannot be expressed appropriately in systems terms. It is not unusual for users to input search terms that are different from the index terms information systems use. Various methods have been proposed to help users choose search terms and articulate queries. One widely used approach is to incorporate into the information system a thesaurus-like component that represents both the important concepts in a particular subject area and the semantic relationships among those concepts. Unfortunately, the development and use of thesauri is not without its own problems. The thesaurus employed in a specific information system has often been developed for a general subject area and needs significant enhancement to be tailored to the information system where it is to be used. This thesaurus development process, if done manually, is both time consuming and labor intensive. Usage of a thesaurus in searching is complex and may raise barriers for the user. For illustration purposes, let us consider two scenarios of thesaurus usage. In the first scenario the user inputs a search term and the thesaurus then displays a matching set of related terms. Without an overview of the thesaurus - and without the ability to see the matching terms in the context of other terms - it may be difficult to assess the quality of the related terms in order to select the correct term. In the second scenario the user browses the whole thesaurus, which is organized as in an alphabetically ordered list. The problem with this approach is that the list may be long, and neither does it show users the global semantic relationship among all the listed terms.