Search (79 results, page 1 of 4)

  • × theme_ss:"Semantisches Umfeld in Indexierung u. Retrieval"
  • × type_ss:"a"
  • × year_i:[2010 TO 2020}
  1. Brandão, W.C.; Santos, R.L.T.; Ziviani, N.; Moura, E.S. de; Silva, A.S. da: Learning to expand queries using entities (2014) 0.06
    0.05698722 = product of:
      0.085480824 = sum of:
        0.008779433 = weight(_text_:a in 1343) [ClassicSimilarity], result of:
          0.008779433 = score(doc=1343,freq=14.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.1685276 = fieldWeight in 1343, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1343)
        0.076701395 = sum of:
          0.046094913 = weight(_text_:de in 1343) [ClassicSimilarity], result of:
            0.046094913 = score(doc=1343,freq=2.0), product of:
              0.19416152 = queryWeight, product of:
                4.297489 = idf(docFreq=1634, maxDocs=44218)
                0.045180224 = queryNorm
              0.23740499 = fieldWeight in 1343, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.297489 = idf(docFreq=1634, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1343)
          0.030606484 = weight(_text_:22 in 1343) [ClassicSimilarity], result of:
            0.030606484 = score(doc=1343,freq=2.0), product of:
              0.15821345 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.045180224 = queryNorm
              0.19345059 = fieldWeight in 1343, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1343)
      0.6666667 = coord(2/3)
    
    Abstract
    A substantial fraction of web search queries contain references to entities, such as persons, organizations, and locations. Recently, methods that exploit named entities have been shown to be more effective for query expansion than traditional pseudorelevance feedback methods. In this article, we introduce a supervised learning approach that exploits named entities for query expansion using Wikipedia as a repository of high-quality feedback documents. In contrast with existing entity-oriented pseudorelevance feedback approaches, we tackle query expansion as a learning-to-rank problem. As a result, not only do we select effective expansion terms but we also weigh these terms according to their predicted effectiveness. To this end, we exploit the rich structure of Wikipedia articles to devise discriminative term features, including each candidate term's proximity to the original query terms, as well as its frequency across multiple article fields and in category and infobox descriptors. Experiments on three Text REtrieval Conference web test collections attest the effectiveness of our approach, with gains of up to 23.32% in terms of mean average precision, 19.49% in terms of precision at 10, and 7.86% in terms of normalized discounted cumulative gain compared with a state-of-the-art approach for entity-oriented query expansion.
    Date
    22. 8.2014 17:07:50
    Type
    a
  2. Colace, F.; Santo, M. De; Greco, L.; Napoletano, P.: Weighted word pairs for query expansion (2015) 0.03
    0.029097255 = product of:
      0.04364588 = sum of:
        0.011379444 = weight(_text_:a in 2687) [ClassicSimilarity], result of:
          0.011379444 = score(doc=2687,freq=12.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.21843673 = fieldWeight in 2687, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2687)
        0.032266438 = product of:
          0.064532876 = sum of:
            0.064532876 = weight(_text_:de in 2687) [ClassicSimilarity], result of:
              0.064532876 = score(doc=2687,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.33236697 = fieldWeight in 2687, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2687)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper proposes a novel query expansion method to improve accuracy of text retrieval systems. Our method makes use of a minimal relevance feedback to expand the initial query with a structured representation composed of weighted pairs of words. Such a structure is obtained from the relevance feedback through a method for pairs of words selection based on the Probabilistic Topic Model. We compared our method with other baseline query expansion schemes and methods. Evaluations performed on TREC-8 demonstrated the effectiveness of the proposed method with respect to the baseline.
    Type
    a
  3. Kopácsi, S. et al.: Development of a classification server to support metadata harmonization in a long term preservation system (2016) 0.03
    0.02806764 = product of:
      0.042101458 = sum of:
        0.011494976 = weight(_text_:a in 3280) [ClassicSimilarity], result of:
          0.011494976 = score(doc=3280,freq=6.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.22065444 = fieldWeight in 3280, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.078125 = fieldNorm(doc=3280)
        0.030606484 = product of:
          0.061212968 = sum of:
            0.061212968 = weight(_text_:22 in 3280) [ClassicSimilarity], result of:
              0.061212968 = score(doc=3280,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.38690117 = fieldWeight in 3280, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3280)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Source
    Metadata and semantics research: 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings. Eds.: E. Garoufallou
    Type
    a
  4. Colace, F.; Santo, M. de; Greco, L.; Napoletano, P.: Improving relevance feedback-based query expansion by the use of a weighted word pairs approach (2015) 0.03
    0.02546151 = product of:
      0.038192265 = sum of:
        0.010535319 = weight(_text_:a in 2263) [ClassicSimilarity], result of:
          0.010535319 = score(doc=2263,freq=14.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.20223314 = fieldWeight in 2263, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2263)
        0.027656946 = product of:
          0.055313893 = sum of:
            0.055313893 = weight(_text_:de in 2263) [ClassicSimilarity], result of:
              0.055313893 = score(doc=2263,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.28488597 = fieldWeight in 2263, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2263)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In this article, the use of a new term extraction method for query expansion (QE) in text retrieval is investigated. The new method expands the initial query with a structured representation made of weighted word pairs (WWP) extracted from a set of training documents (relevance feedback). Standard text retrieval systems can handle a WWP structure through custom Boolean weighted models. We experimented with both the explicit and pseudorelevance feedback schemas and compared the proposed term extraction method with others in the literature, such as KLD and RM3. Evaluations have been conducted on a number of test collections (Text REtrivel Conference [TREC]-6, -7, -8, -9, and -10). Results demonstrated that the QE method based on this new structure outperforms the baseline.
    Type
    a
  5. Rekabsaz, N. et al.: Toward optimized multimodal concept indexing (2016) 0.02
    0.02482874 = product of:
      0.03724311 = sum of:
        0.0066366266 = weight(_text_:a in 2751) [ClassicSimilarity], result of:
          0.0066366266 = score(doc=2751,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.12739488 = fieldWeight in 2751, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.078125 = fieldNorm(doc=2751)
        0.030606484 = product of:
          0.061212968 = sum of:
            0.061212968 = weight(_text_:22 in 2751) [ClassicSimilarity], result of:
              0.061212968 = score(doc=2751,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.38690117 = fieldWeight in 2751, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2751)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Date
    1. 2.2016 18:25:22
    Type
    a
  6. Kozikowski, P. et al.: Support of part-whole relations in query answering (2016) 0.02
    0.02482874 = product of:
      0.03724311 = sum of:
        0.0066366266 = weight(_text_:a in 2754) [ClassicSimilarity], result of:
          0.0066366266 = score(doc=2754,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.12739488 = fieldWeight in 2754, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.078125 = fieldNorm(doc=2754)
        0.030606484 = product of:
          0.061212968 = sum of:
            0.061212968 = weight(_text_:22 in 2754) [ClassicSimilarity], result of:
              0.061212968 = score(doc=2754,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.38690117 = fieldWeight in 2754, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2754)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Date
    1. 2.2016 18:25:22
    Type
    a
  7. Marx, E. et al.: Exploring term networks for semantic search over RDF knowledge graphs (2016) 0.02
    0.02482874 = product of:
      0.03724311 = sum of:
        0.0066366266 = weight(_text_:a in 3279) [ClassicSimilarity], result of:
          0.0066366266 = score(doc=3279,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.12739488 = fieldWeight in 3279, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.078125 = fieldNorm(doc=3279)
        0.030606484 = product of:
          0.061212968 = sum of:
            0.061212968 = weight(_text_:22 in 3279) [ClassicSimilarity], result of:
              0.061212968 = score(doc=3279,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.38690117 = fieldWeight in 3279, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3279)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Source
    Metadata and semantics research: 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings. Eds.: E. Garoufallou
    Type
    a
  8. Bräscher, M.: Semantic relations in knowledge organization systems (2014) 0.02
    0.024373945 = product of:
      0.036560915 = sum of:
        0.00890397 = weight(_text_:a in 1380) [ClassicSimilarity], result of:
          0.00890397 = score(doc=1380,freq=10.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.1709182 = fieldWeight in 1380, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1380)
        0.027656946 = product of:
          0.055313893 = sum of:
            0.055313893 = weight(_text_:de in 1380) [ClassicSimilarity], result of:
              0.055313893 = score(doc=1380,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.28488597 = fieldWeight in 1380, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1380)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Semantic relations in knowledge organization systems (KOS) are discussed as well as the need to analyze and systematize the contributions from different areas of knowledge that are devoted to semantic studies in order to collaborate in the definition of a theoretical framework for the study of types of relations included in KOS. Partial results of a survey reveal that, in general, standards and guidelines for developing thesauri are limited to defining and exemplifying types of relationships without guidance concerning the theoretical underpinning of these definitions. The possibilities of a compositional approach to defining the meaning of syntagmatic relations is discussed. Studies on the theoretical foundations that guide the establishment of semantic relations and approaches to be adopted for the preparation of KOS certainly contribute to consolidating a theoretical framework for the area of knowledge organization.
    Footnote
    Papers from the 2nd ISKO-Brazil Conference, Rio de Janeiro, May, 2013.
    Type
    a
  9. Ferreira, R.S.; Graça Pimentel, M. de; Cristo, M.: ¬A wikification prediction model based on the combination of latent, dyadic, and monadic features (2018) 0.02
    0.0236423 = product of:
      0.03546345 = sum of:
        0.012415992 = weight(_text_:a in 4119) [ClassicSimilarity], result of:
          0.012415992 = score(doc=4119,freq=28.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.23833402 = fieldWeight in 4119, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4119)
        0.023047457 = product of:
          0.046094913 = sum of:
            0.046094913 = weight(_text_:de in 4119) [ClassicSimilarity], result of:
              0.046094913 = score(doc=4119,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.23740499 = fieldWeight in 4119, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4119)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Considering repositories of web documents that are semantically linked and created in a collaborative fashion, as in the case of Wikipedia, a key problem faced by content providers is the placement of links in the articles. These links must support user navigation and provide a deeper semantic interpretation of the content. Current wikification methods exploit machine learning techniques to capture characteristics of the concepts and its associations. In previous work, we proposed a preliminary prediction model combining traditional predictors with a latent component which captures the concept graph topology by means of matrix factorization. In this work, we provide a detailed description of our method and a deeper comparison with a state-of-the-art wikification method using a sample of Wikipedia and report a gain up to 13% in F1 score. We also provide a comprehensive analysis of the model performance showing the importance of the latent predictor component and the attributes derived from the associations between the concepts. Moreover, we include an analysis that allows us to conclude that the model is resilient to ambiguity without including a disambiguation phase. We finally report the positive impact of selecting training samples from specific content quality classes.
    Type
    a
  10. Gnoli, C.; Santis, R. de; Pusterla, L.: Commerce, see also Rhetoric : cross-discipline relationships as authority data for enhanced retrieval (2015) 0.02
    0.0220016 = product of:
      0.0330024 = sum of:
        0.0099549405 = weight(_text_:a in 2299) [ClassicSimilarity], result of:
          0.0099549405 = score(doc=2299,freq=18.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.19109234 = fieldWeight in 2299, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2299)
        0.023047457 = product of:
          0.046094913 = sum of:
            0.046094913 = weight(_text_:de in 2299) [ClassicSimilarity], result of:
              0.046094913 = score(doc=2299,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.23740499 = fieldWeight in 2299, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2299)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Subjects in a classification scheme are often related to other subjects belonging to different hierarchies. This problem was identified already by Hugh of Saint Victor (1096?-1141). Still with present-time bibliographic classifications, a user browsing the class of architecture under the hierarchy of arts may miss relevant items classified in building or in civil engineering under the hierarchy of applied sciences. To face these limitations we have developed SciGator, a browsable interface to explore the collections of all scientific libraries at the University of Pavia. Besides showing subclasses of a given class, the interface points users to related classes in the Dewey Decimal Classification, or in other local schemes, and allows for expanded queries that include them. This is made possible by using a special field for related classes in the database structure which models classification authority data. Ontologically, many relationships between classes in different hierarchies are cases of existential dependence. Dependence can occur between disciplines in such disciplinary classifications as Dewey (e.g. architecture existentially depends on building), or between phenomena in such phenomenon-based classifications as the Integrative Levels Classification (e.g. fishing as a human activity existentially depends on fish as a class of organisms). We provide an example of its representation in OWL and discuss some details of it.
    Source
    Classification and authority control: expanding resource discovery: proceedings of the International UDC Seminar 2015, 29-30 October 2015, Lisbon, Portugal. Eds.: Slavic, A. u. M.I. Cordeiro
    Type
    a
  11. Cai, F.; Rijke, M. de: Learning from homologous queries and semantically related terms for query auto completion (2016) 0.02
    0.021622043 = product of:
      0.032433063 = sum of:
        0.009385608 = weight(_text_:a in 2971) [ClassicSimilarity], result of:
          0.009385608 = score(doc=2971,freq=16.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.18016359 = fieldWeight in 2971, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2971)
        0.023047457 = product of:
          0.046094913 = sum of:
            0.046094913 = weight(_text_:de in 2971) [ClassicSimilarity], result of:
              0.046094913 = score(doc=2971,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.23740499 = fieldWeight in 2971, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2971)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Query auto completion (QAC) models recommend possible queries to web search users when they start typing a query prefix. Most of today's QAC models rank candidate queries by popularity (i.e., frequency), and in doing so they tend to follow a strict query matching policy when counting the queries. That is, they ignore the contributions from so-called homologous queries, queries with the same terms but ordered differently or queries that expand the original query. Importantly, homologous queries often express a remarkably similar search intent. Moreover, today's QAC approaches often ignore semantically related terms. We argue that users are prone to combine semantically related terms when generating queries. We propose a learning to rank-based QAC approach, where, for the first time, features derived from homologous queries and semantically related terms are introduced. In particular, we consider: (i) the observed and predicted popularity of homologous queries for a query candidate; and (ii) the semantic relatedness of pairs of terms inside a query and pairs of queries inside a session. We quantify the improvement of the proposed new features using two large-scale real-world query logs and show that the mean reciprocal rank and the success rate can be improved by up to 9% over state-of-the-art QAC models.
    Type
    a
  12. Mlodzka-Stybel, A.: Towards continuous improvement of users' access to a library catalogue (2014) 0.02
    0.020477211 = product of:
      0.030715816 = sum of:
        0.009291277 = weight(_text_:a in 1466) [ClassicSimilarity], result of:
          0.009291277 = score(doc=1466,freq=8.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.17835285 = fieldWeight in 1466, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1466)
        0.02142454 = product of:
          0.04284908 = sum of:
            0.04284908 = weight(_text_:22 in 1466) [ClassicSimilarity], result of:
              0.04284908 = score(doc=1466,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.2708308 = fieldWeight in 1466, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1466)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The paper discusses the issue of increasing users' access to library records by their publication in Google. Data from the records, converted into html format, have been indexed by Google. The process covered basic formal description fields of the records, description of the content, supported with a thesaurus, as well as an abstract, if present in the record. In addition to monitoring the end users' statistics, the pilot testing covered visibility of library records in Google search results.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
    Type
    a
  13. Salaba, A.; Zeng, M.L.: Extending the "Explore" user task beyond subject authority data into the linked data sphere (2014) 0.02
    0.019647349 = product of:
      0.029471021 = sum of:
        0.008046483 = weight(_text_:a in 1465) [ClassicSimilarity], result of:
          0.008046483 = score(doc=1465,freq=6.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.1544581 = fieldWeight in 1465, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1465)
        0.02142454 = product of:
          0.04284908 = sum of:
            0.04284908 = weight(_text_:22 in 1465) [ClassicSimilarity], result of:
              0.04284908 = score(doc=1465,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.2708308 = fieldWeight in 1465, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1465)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    "Explore" is a user task introduced in the Functional Requirements for Subject Authority Data (FRSAD) final report. Through various case scenarios, the authors discuss how structured data, presented based on Linked Data principles and using knowledge organisation systems (KOS) as the backbone, extend the explore task within and beyond subject authority data.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
    Type
    a
  14. Zeng, M.L.; Gracy, K.F.; Zumer, M.: Using a semantic analysis tool to generate subject access points : a study using Panofsky's theory and two research samples (2014) 0.02
    0.017551895 = product of:
      0.026327841 = sum of:
        0.007963953 = weight(_text_:a in 1464) [ClassicSimilarity], result of:
          0.007963953 = score(doc=1464,freq=8.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.15287387 = fieldWeight in 1464, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1464)
        0.01836389 = product of:
          0.03672778 = sum of:
            0.03672778 = weight(_text_:22 in 1464) [ClassicSimilarity], result of:
              0.03672778 = score(doc=1464,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.23214069 = fieldWeight in 1464, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1464)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper attempts to explore an approach of using an automatic semantic analysis tool to enhance the "subject" access to materials that are not included in the usual library subject cataloging process. Using two research samples the authors analyzed the access points supplied by OpenCalais, a semantic analysis tool. As an aid in understanding how computerized subject analysis might be approached, this paper suggests using the three-layer framework that has been accepted and applied in image analysis, developed by Erwin Panofsky.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
    Type
    a
  15. Brunetti, J.M.; Roberto García, R.: User-centered design and evaluation of overview components for semantic data exploration (2014) 0.01
    0.012844093 = product of:
      0.01926614 = sum of:
        0.007023546 = weight(_text_:a in 1626) [ClassicSimilarity], result of:
          0.007023546 = score(doc=1626,freq=14.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.13482209 = fieldWeight in 1626, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=1626)
        0.012242594 = product of:
          0.024485188 = sum of:
            0.024485188 = weight(_text_:22 in 1626) [ClassicSimilarity], result of:
              0.024485188 = score(doc=1626,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.15476047 = fieldWeight in 1626, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1626)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose - The growing volumes of semantic data available in the web result in the need for handling the information overload phenomenon. The potential of this amount of data is enormous but in most cases it is very difficult for users to visualize, explore and use this data, especially for lay-users without experience with Semantic Web technologies. The paper aims to discuss these issues. Design/methodology/approach - The Visual Information-Seeking Mantra "Overview first, zoom and filter, then details-on-demand" proposed by Shneiderman describes how data should be presented in different stages to achieve an effective exploration. The overview is the first user task when dealing with a data set. The objective is that the user is capable of getting an idea about the overall structure of the data set. Different information architecture (IA) components supporting the overview tasks have been developed, so they are automatically generated from semantic data, and evaluated with end-users. Findings - The chosen IA components are well known to web users, as they are present in most web pages: navigation bars, site maps and site indexes. The authors complement them with Treemaps, a visualization technique for displaying hierarchical data. These components have been developed following an iterative User-Centered Design methodology. Evaluations with end-users have shown that they get easily used to them despite the fact that they are generated automatically from structured data, without requiring knowledge about the underlying semantic technologies, and that the different overview components complement each other as they focus on different information search needs. Originality/value - Obtaining semantic data sets overviews cannot be easily done with the current semantic web browsers. Overviews become difficult to achieve with large heterogeneous data sets, which is typical in the Semantic Web, because traditional IA techniques do not easily scale to large data sets. There is little or no support to obtain overview information quickly and easily at the beginning of the exploration of a new data set. This can be a serious limitation when exploring a data set for the first time, especially for lay-users. The proposal is to reuse and adapt existing IA components to provide this overview to users and show that they can be generated automatically from the thesaurus and ontologies that structure semantic data while providing a comparable user experience to traditional web sites.
    Date
    20. 1.2015 18:30:22
    Type
    a
  16. Thenmalar, S.; Geetha, T.V.: Enhanced ontology-based indexing and searching (2014) 0.01
    0.009823674 = product of:
      0.014735511 = sum of:
        0.0040232413 = weight(_text_:a in 1633) [ClassicSimilarity], result of:
          0.0040232413 = score(doc=1633,freq=6.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.07722905 = fieldWeight in 1633, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1633)
        0.01071227 = product of:
          0.02142454 = sum of:
            0.02142454 = weight(_text_:22 in 1633) [ClassicSimilarity], result of:
              0.02142454 = score(doc=1633,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.1354154 = fieldWeight in 1633, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1633)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose - The purpose of this paper is to improve the conceptual-based search by incorporating structural ontological information such as concepts and relations. Generally, Semantic-based information retrieval aims to identify relevant information based on the meanings of the query terms or on the context of the terms and the performance of semantic information retrieval is carried out through standard measures-precision and recall. Higher precision leads to the (meaningful) relevant documents obtained and lower recall leads to the less coverage of the concepts. Design/methodology/approach - In this paper, the authors enhance the existing ontology-based indexing proposed by Kohler et al., by incorporating sibling information to the index. The index designed by Kohler et al., contains only super and sub-concepts from the ontology. In addition, in our approach, we focus on two tasks; query expansion and ranking of the expanded queries, to improve the efficiency of the ontology-based search. The aforementioned tasks make use of ontological concepts, and relations existing between those concepts so as to obtain semantically more relevant search results for a given query. Findings - The proposed ontology-based indexing technique is investigated by analysing the coverage of concepts that are being populated in the index. Here, we introduce a new measure called index enhancement measure, to estimate the coverage of ontological concepts being indexed. We have evaluated the ontology-based search for the tourism domain with the tourism documents and tourism-specific ontology. The comparison of search results based on the use of ontology "with and without query expansion" is examined to estimate the efficiency of the proposed query expansion task. The ranking is compared with the ORank system to evaluate the performance of our ontology-based search. From these analyses, the ontology-based search results shows better recall when compared to the other concept-based search systems. The mean average precision of the ontology-based search is found to be 0.79 and the recall is found to be 0.65, the ORank system has the mean average precision of 0.62 and the recall is found to be 0.51, while the concept-based search has the mean average precision of 0.56 and the recall is found to be 0.42. Practical implications - When the concept is not present in the domain-specific ontology, the concept cannot be indexed. When the given query term is not available in the ontology then the term-based results are retrieved. Originality/value - In addition to super and sub-concepts, we incorporate the concepts present in same level (siblings) to the ontological index. The structural information from the ontology is determined for the query expansion. The ranking of the documents depends on the type of the query (single concept query, multiple concept queries and concept with relation queries) and the ontological relations that exists in the query and the documents. With this ontological structural information, the search results showed us better coverage of concepts with respect to the query.
    Date
    20. 1.2015 18:30:22
    Type
    a
  17. Bernier-Colborne, G.: Identifying semantic relations in a specialized corpus through distributional analysis of a cooccurrence tensor (2014) 0.00
    0.0043350267 = product of:
      0.01300508 = sum of:
        0.01300508 = weight(_text_:a in 2153) [ClassicSimilarity], result of:
          0.01300508 = score(doc=2153,freq=12.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.24964198 = fieldWeight in 2153, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=2153)
      0.33333334 = coord(1/3)
    
    Abstract
    We describe a method of encoding cooccurrence information in a three-way tensor from which HAL-style word space models can be derived. We use these models to identify semantic relations in a specialized corpus. Results suggest that the tensor-based methods we propose are more robust than the basic HAL model in some respects.
    Type
    a
  18. Vidinli, I.B.; Ozcan, R.: New query suggestion framework and algorithms : a case study for an educational search engine (2016) 0.00
    0.003754243 = product of:
      0.011262729 = sum of:
        0.011262729 = weight(_text_:a in 3185) [ClassicSimilarity], result of:
          0.011262729 = score(doc=3185,freq=16.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.2161963 = fieldWeight in 3185, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3185)
      0.33333334 = coord(1/3)
    
    Abstract
    Query suggestion is generally an integrated part of web search engines. In this study, we first redefine and reduce the query suggestion problem as "comparison of queries". We then propose a general modular framework for query suggestion algorithm development. We also develop new query suggestion algorithms which are used in our proposed framework, exploiting query, session and user features. As a case study, we use query logs of a real educational search engine that targets K-12 students in Turkey. We also exploit educational features (course, grade) in our query suggestion algorithms. We test our framework and algorithms over a set of queries by an experiment and demonstrate a 66-90% statistically significant increase in relevance of query suggestions compared to a baseline method.
    Type
    a
  19. Mäkelä, E.; Hyvönen, E.; Saarela, S.; Vilfanen, K.: Application of ontology techniques to view-based semantic serach and browsing (2012) 0.00
    0.0035117732 = product of:
      0.010535319 = sum of:
        0.010535319 = weight(_text_:a in 3264) [ClassicSimilarity], result of:
          0.010535319 = score(doc=3264,freq=14.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.20223314 = fieldWeight in 3264, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3264)
      0.33333334 = coord(1/3)
    
    Abstract
    We scho how the beenfits of the view-based search method, developed within the information retrieval community, can be extended with ontology-based search, developed within the Semantic Web community, and with semantic recommendations. As a proof of the concept, we have implemented an ontology-and view-based search engine and recommendations system Ontogaotr for RDF(S) repositories. Ontogator is innovative in two ways. Firstly, the RDFS.based ontologies used for annotating metadata are used in the user interface to facilitate view-based information retrieval. The views provide the user with an overview of the repositorys contents and a vocabulary for expressing search queries. Secondlyy, a semantic browsing function is provided by a recommender system. This system enriches instance level metadata by ontologies and provides the user with links to semantically related relevant resources. The semantic linkage is specified in terms of logical rules. To illustrate and discuss the ideas, a deployed application of Ontogator to a photo repository of the Helsinki University Museum is presented.
    Type
    a
  20. Xamena, E.; Brignole, N.B.; Maguitman, A.G.: ¬A study of relevance propagation in large topic ontologies (2013) 0.00
    0.0034978096 = product of:
      0.010493428 = sum of:
        0.010493428 = weight(_text_:a in 1105) [ClassicSimilarity], result of:
          0.010493428 = score(doc=1105,freq=20.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.20142901 = fieldWeight in 1105, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1105)
      0.33333334 = coord(1/3)
    
    Abstract
    Topic ontologies or web directories consist of large collections of links to websites, arranged by topic in different categories. The structure of these ontologies is typically not flat because there are hierarchical and nonhierarchical relationships among topics. As a consequence, websites classified under a certain topic may be relevant to other topics. Although some of these relevance relations are explicit, most of them must be discovered by an analysis of the structure of the ontologies. This article proposes a family of models of relevance propagation in topic ontologies. An efficient computational framework is described and used to compute nine different models for a portion of the Open Directory Project graph consisting of more than half a million nodes and approximately 1.5 million edges of different types. After performing a quantitative analysis, a user study was carried out to compare the most promising models. It was found that some general difficulties rule out the possibility of defining flawless models of relevance propagation that only take into account structural aspects of an ontology. However, there is a clear indication that including transitive relations induced by the nonhierarchical components of the ontology results in relevance propagation models that are superior to more basic approaches.
    Type
    a

Languages

  • e 73
  • d 5
  • More… Less…