Search (5 results, page 1 of 1)

  • × theme_ss:"Semantisches Umfeld in Indexierung u. Retrieval"
  • × type_ss:"el"
  • × year_i:[2000 TO 2010}
  1. Hoang, H.H.; Tjoa, A.M: ¬The state of the art of ontology-based query systems : a comparison of existing approaches (2006) 0.00
    0.0046478845 = product of:
      0.027887305 = sum of:
        0.027887305 = product of:
          0.05577461 = sum of:
            0.05577461 = weight(_text_:methods in 792) [ClassicSimilarity], result of:
              0.05577461 = score(doc=792,freq=2.0), product of:
                0.15695344 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.03903913 = queryNorm
                0.35535768 = fieldWeight in 792, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0625 = fieldNorm(doc=792)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    Based on an in-depth analysis of existing approaches in building ontology-based query systems we discuss and compare the methods, approaches to be used in current query systems using Ontology or the Semantic Web techniques. This paper identifies various relevant research directions in ontology-based querying research. Based on the results of our investigation we summarise the state of the art ontology-based query/search and name areas of further research activities.
  2. Prieto-Díaz, R.: ¬A faceted approach to building ontologies (2002) 0.00
    0.0034859132 = product of:
      0.020915478 = sum of:
        0.020915478 = product of:
          0.041830957 = sum of:
            0.041830957 = weight(_text_:methods in 2259) [ClassicSimilarity], result of:
              0.041830957 = score(doc=2259,freq=2.0), product of:
                0.15695344 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.03903913 = queryNorm
                0.26651827 = fieldWeight in 2259, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2259)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    An ontology is "an explicit conceptualization of a domain of discourse, and thus provides a shared and common understanding of the domain." We have been producing ontologies for millennia to understand and explain our rationale and environment. From Plato's philosophical framework to modern day classification systems, ontologies are, in most cases, the product of extensive analysis and categorization. Only recently has the process of building ontologies become a research topic of interest. Today, ontologies are built very much ad-hoc. A terminology is first developed providing a controlled vocabulary for the subject area or domain of interest, then it is organized into a taxonomy where key concepts are identified, and finally these concepts are defined and related to create an ontology. The intent of this paper is to show that domain analysis methods can be used for building ontologies. Domain analysis aims at generic models that represent groups of similar systems within an application domain. In this sense, it deals with categorization of common objects and operations, with clear, unambiguous definitions of them and with defining their relationships.
  3. Knorz, G.; Rein, B.: Semantische Suche in einer Hochschulontologie : Ontologie-basiertes Information-Filtering und -Retrieval mit relationalen Datenbanken (2005) 0.00
    0.0030854037 = product of:
      0.018512422 = sum of:
        0.018512422 = product of:
          0.037024844 = sum of:
            0.037024844 = weight(_text_:22 in 4324) [ClassicSimilarity], result of:
              0.037024844 = score(doc=4324,freq=2.0), product of:
                0.1367084 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03903913 = queryNorm
                0.2708308 = fieldWeight in 4324, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4324)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    11. 2.2011 18:22:25
  4. Bradford, R.B.: Relationship discovery in large text collections using Latent Semantic Indexing (2006) 0.00
    0.0017630879 = product of:
      0.010578527 = sum of:
        0.010578527 = product of:
          0.021157054 = sum of:
            0.021157054 = weight(_text_:22 in 1163) [ClassicSimilarity], result of:
              0.021157054 = score(doc=1163,freq=2.0), product of:
                0.1367084 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03903913 = queryNorm
                0.15476047 = fieldWeight in 1163, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1163)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Source
    Proceedings of the Fourth Workshop on Link Analysis, Counterterrorism, and Security, SIAM Data Mining Conference, Bethesda, MD, 20-22 April, 2006. [http://www.siam.org/meetings/sdm06/workproceed/Link%20Analysis/15.pdf]
  5. Zhang, J.; Mostafa, J.; Tripathy, H.: Information retrieval by semantic analysis and visualization of the concept space of D-Lib® magazine (2002) 0.00
    0.0014524639 = product of:
      0.008714783 = sum of:
        0.008714783 = product of:
          0.017429566 = sum of:
            0.017429566 = weight(_text_:methods in 1211) [ClassicSimilarity], result of:
              0.017429566 = score(doc=1211,freq=2.0), product of:
                0.15695344 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.03903913 = queryNorm
                0.11104927 = fieldWeight in 1211, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=1211)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    From the user's perspective, however, it is still difficult to use current information retrieval systems. Users frequently have problems expressing their information needs and translating those needs into queries. This is partly due to the fact that information needs cannot be expressed appropriately in systems terms. It is not unusual for users to input search terms that are different from the index terms information systems use. Various methods have been proposed to help users choose search terms and articulate queries. One widely used approach is to incorporate into the information system a thesaurus-like component that represents both the important concepts in a particular subject area and the semantic relationships among those concepts. Unfortunately, the development and use of thesauri is not without its own problems. The thesaurus employed in a specific information system has often been developed for a general subject area and needs significant enhancement to be tailored to the information system where it is to be used. This thesaurus development process, if done manually, is both time consuming and labor intensive. Usage of a thesaurus in searching is complex and may raise barriers for the user. For illustration purposes, let us consider two scenarios of thesaurus usage. In the first scenario the user inputs a search term and the thesaurus then displays a matching set of related terms. Without an overview of the thesaurus - and without the ability to see the matching terms in the context of other terms - it may be difficult to assess the quality of the related terms in order to select the correct term. In the second scenario the user browses the whole thesaurus, which is organized as in an alphabetically ordered list. The problem with this approach is that the list may be long, and neither does it show users the global semantic relationship among all the listed terms.