Search (11 results, page 1 of 1)

  • × theme_ss:"Semantisches Umfeld in Indexierung u. Retrieval"
  • × type_ss:"el"
  1. Wongthontham, P.; Abu-Salih, B.: Ontology-based approach for semantic data extraction from social big data : state-of-the-art and research directions (2018) 0.02
    0.021947198 = product of:
      0.08778879 = sum of:
        0.08778879 = weight(_text_:data in 4097) [ClassicSimilarity], result of:
          0.08778879 = score(doc=4097,freq=16.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.5928845 = fieldWeight in 4097, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=4097)
      0.25 = coord(1/4)
    
    Abstract
    A challenge of managing and extracting useful knowledge from social media data sources has attracted much attention from academic and industry. To address this challenge, semantic analysis of textual data is focused in this paper. We propose an ontology-based approach to extract semantics of textual data and define the domain of data. In other words, we semantically analyse the social data at two levels i.e. the entity level and the domain level. We have chosen Twitter as a social channel challenge for a purpose of concept proof. Domain knowledge is captured in ontologies which are then used to enrich the semantics of tweets provided with specific semantic conceptual representation of entities that appear in the tweets. Case studies are used to demonstrate this approach. We experiment and evaluate our proposed approach with a public dataset collected from Twitter and from the politics domain. The ontology-based approach leverages entity extraction and concept mappings in terms of quantity and accuracy of concept identification.
    Theme
    Data Mining
  2. Smith, D.A.; Shadbolt, N.R.: FacetOntology : expressive descriptions of facets in the Semantic Web (2012) 0.02
    0.020448092 = product of:
      0.08179237 = sum of:
        0.08179237 = weight(_text_:data in 2208) [ClassicSimilarity], result of:
          0.08179237 = score(doc=2208,freq=20.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.5523875 = fieldWeight in 2208, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2208)
      0.25 = coord(1/4)
    
    Abstract
    The formal structure of the information on the Semantic Web lends itself to faceted browsing, an information retrieval method where users can filter results based on the values of properties ("facets"). Numerous faceted browsers have been created to browse RDF and Linked Data, but these systems use their own ontologies for defining how data is queried to populate their facets. Since the source data is the same format across these systems (specifically, RDF), we can unify the different methods of describing how to quer the underlying data, to enable compatibility across systems, and provide an extensible base ontology for future systems. To this end, we present FacetOntology, an ontology that defines how to query data to form a faceted browser, and a number of transformations and filters that can be applied to data before it is shown to users. FacetOntology overcomes limitations in the expressivity of existing work, by enabling the full expressivity of SPARQL when selecting data for facets. By applying a FacetOntology definition to data, a set of facets are specified, each with queries and filters to source RDF data, which enables faceted browsing systems to be created using that RDF data.
  3. Bradford, R.B.: Relationship discovery in large text collections using Latent Semantic Indexing (2006) 0.02
    0.016690476 = product of:
      0.03338095 = sum of:
        0.020692015 = weight(_text_:data in 1163) [ClassicSimilarity], result of:
          0.020692015 = score(doc=1163,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.1397442 = fieldWeight in 1163, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03125 = fieldNorm(doc=1163)
        0.012688936 = product of:
          0.025377871 = sum of:
            0.025377871 = weight(_text_:22 in 1163) [ClassicSimilarity], result of:
              0.025377871 = score(doc=1163,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.15476047 = fieldWeight in 1163, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1163)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Source
    Proceedings of the Fourth Workshop on Link Analysis, Counterterrorism, and Security, SIAM Data Mining Conference, Bethesda, MD, 20-22 April, 2006. [http://www.siam.org/meetings/sdm06/workproceed/Link%20Analysis/15.pdf]
  4. Arenas, M.; Cuenca Grau, B.; Kharlamov, E.; Marciuska, S.; Zheleznyakov, D.: Faceted search over ontology-enhanced RDF data (2014) 0.01
    0.013439858 = product of:
      0.053759433 = sum of:
        0.053759433 = weight(_text_:data in 2207) [ClassicSimilarity], result of:
          0.053759433 = score(doc=2207,freq=6.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.3630661 = fieldWeight in 2207, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=2207)
      0.25 = coord(1/4)
    
    Abstract
    An increasing number of applications rely on RDF, OWL2, and SPARQL for storing and querying data. SPARQL, however, is not targeted towards end-users, and suitable query interfaces are needed. Faceted search is a prominent approach for end-user data access, and several RDF-based faceted search systems have been developed. There is, however, a lack of rigorous theoretical underpinning for faceted search in the context of RDF and OWL2. In this paper, we provide such solid foundations. We formalise faceted interfaces for this context, identify a fragment of first-order logic capturing the underlying queries, and study the complexity of answering such queries for RDF and OWL2 profiles. We then study interface generation and update, and devise efficiently implementable algorithms. Finally, we have implemented and tested our faceted search algorithms for scalability, with encouraging results.
  5. Gábor, K.; Zargayouna, H.; Tellier, I.; Buscaldi, D.; Charnois, T.: ¬A typology of semantic relations dedicated to scientific literature analysis (2016) 0.01
    0.012802532 = product of:
      0.051210128 = sum of:
        0.051210128 = weight(_text_:data in 2933) [ClassicSimilarity], result of:
          0.051210128 = score(doc=2933,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.34584928 = fieldWeight in 2933, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2933)
      0.25 = coord(1/4)
    
    Abstract
    We propose a method for improving access to scientific literature by analyzing the content of research papers beyond citation links and topic tracking. Our model relies on a typology of explicit semantic relations. These relations are instantiated in the abstract/introduction part of the papers and can be identified automatically using textual data and external ontologies. Preliminary results show a promising precision in unsupervised relationship classification.
    Content
    Vortrag, "Semantics, Analytics, Visualisation: Enhancing Scholarly Data Workshop co-located with the 25th International World Wide Web Conference April 11, 2016 - Montreal, Canada", Montreal 2016.
  6. Fowler, R.H.; Wilson, B.A.; Fowler, W.A.L.: Information navigator : an information system using associative networks for display and retrieval (1992) 0.01
    0.0077595054 = product of:
      0.031038022 = sum of:
        0.031038022 = weight(_text_:data in 919) [ClassicSimilarity], result of:
          0.031038022 = score(doc=919,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2096163 = fieldWeight in 919, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=919)
      0.25 = coord(1/4)
    
    Abstract
    Document retrieval is a highly interactive process dealing with large amounts of information. Visual representations can provide both a means for managing the complexity of large information structures and an interface style well suited to interactive manipulation. The system we have designed utilizes visually displayed graphic structures and a direct manipulation interface style to supply an integrated environment for retrieval. A common visually displayed network structure is used for query, document content, and term relations. A query can be modified through direct manipulation of its visual form by incorporating terms from any other information structure the system displays. An associative thesaurus of terms and an inter-document network provide information about a document collection that can complement other retrieval aids. Visualization of these large data structures makes use of fisheye views and overview diagrams to help overcome some of the inherent difficulties of orientation and navigation in large information structures.
  7. Landauer, T.K.; Foltz, P.W.; Laham, D.: ¬An introduction to Latent Semantic Analysis (1998) 0.01
    0.0077595054 = product of:
      0.031038022 = sum of:
        0.031038022 = weight(_text_:data in 1162) [ClassicSimilarity], result of:
          0.031038022 = score(doc=1162,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2096163 = fieldWeight in 1162, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=1162)
      0.25 = coord(1/4)
    
    Abstract
    Latent Semantic Analysis (LSA) is a theory and method for extracting and representing the contextual-usage meaning of words by statistical computations applied to a large corpus of text (Landauer and Dumais, 1997). The underlying idea is that the aggregate of all the word contexts in which a given word does and does not appear provides a set of mutual constraints that largely determines the similarity of meaning of words and sets of words to each other. The adequacy of LSA's reflection of human knowledge has been established in a variety of ways. For example, its scores overlap those of humans on standard vocabulary and subject matter tests; it mimics human word sorting and category judgments; it simulates word-word and passage-word lexical priming data; and as reported in 3 following articles in this issue, it accurately estimates passage coherence, learnability of passages by individual students, and the quality and quantity of knowledge contained in an essay.
  8. Cao, N.; Sun, J.; Lin, Y.-R.; Gotz, D.; Liu, S.; Qu, H.: FacetAtlas : Multifaceted visualization for rich text corpora (2010) 0.01
    0.006466255 = product of:
      0.02586502 = sum of:
        0.02586502 = weight(_text_:data in 3366) [ClassicSimilarity], result of:
          0.02586502 = score(doc=3366,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 3366, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3366)
      0.25 = coord(1/4)
    
    Abstract
    Documents in rich text corpora usually contain multiple facets of information. For example, an article about a specific disease often consists of different facets such as symptom, treatment, cause, diagnosis, prognosis, and prevention. Thus, documents may have different relations based on different facets. Powerful search tools have been developed to help users locate lists of individual documents that are most related to specific keywords. However, there is a lack of effective analysis tools that reveal the multifaceted relations of documents within or cross the document clusters. In this paper, we present FacetAtlas, a multifaceted visualization technique for visually analyzing rich text corpora. FacetAtlas combines search technology with advanced visual analytical tools to convey both global and local patterns simultaneously. We describe several unique aspects of FacetAtlas, including (1) node cliques and multifaceted edges, (2) an optimized density map, and (3) automated opacity pattern enhancement for highlighting visual patterns, (4) interactive context switch between facets. In addition, we demonstrate the power of FacetAtlas through a case study that targets patient education in the health care domain. Our evaluation shows the benefits of this work, especially in support of complex multifaceted data analysis.
  9. Knorz, G.; Rein, B.: Semantische Suche in einer Hochschulontologie : Ontologie-basiertes Information-Filtering und -Retrieval mit relationalen Datenbanken (2005) 0.01
    0.0055514094 = product of:
      0.022205638 = sum of:
        0.022205638 = product of:
          0.044411276 = sum of:
            0.044411276 = weight(_text_:22 in 4324) [ClassicSimilarity], result of:
              0.044411276 = score(doc=4324,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.2708308 = fieldWeight in 4324, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4324)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    11. 2.2011 18:22:25
  10. Surfing versus Drilling for knowledge in science : When should you use your computer? When should you use your brain? (2018) 0.01
    0.0051730038 = product of:
      0.020692015 = sum of:
        0.020692015 = weight(_text_:data in 4564) [ClassicSimilarity], result of:
          0.020692015 = score(doc=4564,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.1397442 = fieldWeight in 4564, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03125 = fieldNorm(doc=4564)
      0.25 = coord(1/4)
    
    Content
    Editorial: Surfing versus Drilling for Knowledge in Science: When should you use your computer? When should you use your brain? Blaise Pascal: Les deux infinis - The two infinities / Philippe Hünenberger and Oliver Renn - "Surfing" vs. "drilling" in the modern scientific world / Antonio Loprieno - Of millimeter paper and machine learning / Philippe Hünenberger - From one to many, from breadth to depth - industrializing research / Janne Soetbeer - "Deep drilling" requires "surfing" / Gerd Folkers and Laura Folkers - Surfing vs. drilling in science: A delicate balance / Alzbeta Kubincová - Digital trends in academia - for the sake of critical thinking or comfort? / Leif-Thore Deck - I diagnose, therefore I am a Doctor? Will drilling computer software replace human doctors in the future? / Yi Zheng - Surfing versus drilling in fundamental research / Wilfred van Gunsteren - Using brain vs. brute force in computational studies of biological systems / Arieh Warshel - Laboratory literature boards in the digital age / Jeffrey Bode - Research strategies in computational chemistry / Sereina Riniker - Surfing on the hype waves or drilling deep for knowledge? A perspective from industry / Nadine Schneider and Nikolaus Stiefl - The use and purpose of articles and scientists / Philip Mark Lund - Can you look at papers like artwork? / Oliver Renn - Dynamite fishing in the data swamp / Frank Perabo 34 Streetlights, augmented intelligence, and information discovery / Jeffrey Saffer and Vicki Burnett - "Yes Dave. Happy to do that for you." Why AI, machine learning, and blockchain will lead to deeper "drilling" / Michiel Kolman and Sjors de Heuvel - Trends in scientific document search ( Stefan Geißler - Power tools for text mining / Jane Reed 42 Publishing and patenting: Navigating the differences to ensure search success / Paul Peters
  11. Gillitzer, B.: Yewno (2017) 0.00
    0.003172234 = product of:
      0.012688936 = sum of:
        0.012688936 = product of:
          0.025377871 = sum of:
            0.025377871 = weight(_text_:22 in 3447) [ClassicSimilarity], result of:
              0.025377871 = score(doc=3447,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.15476047 = fieldWeight in 3447, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3447)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 2.2017 10:16:49