Search (23 results, page 2 of 2)

  • × theme_ss:"Semantisches Umfeld in Indexierung u. Retrieval"
  • × year_i:[1990 TO 2000}
  1. Järvelin, K.; Niemi, T.: Deductive information retrieval based on classifications (1993) 0.01
    0.008167865 = product of:
      0.01633573 = sum of:
        0.01633573 = product of:
          0.03267146 = sum of:
            0.03267146 = weight(_text_:systems in 2229) [ClassicSimilarity], result of:
              0.03267146 = score(doc=2229,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2037246 = fieldWeight in 2229, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2229)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Modern fact databses contain abundant data classified through several classifications. Typically, users msut consult these classifications in separate manuals or files, thus making their effective use difficult. Contemporary database systems do little support deductive use of classifications. In this study we show how deductive data management techniques can be applied to the utilization of data value classifications. Computation of transitive class relationships is of primary importance here. We define a representation of classifications which supports transitive computation and present an operation-oriented deductive query language tailored for classification-based deductive information retrieval. The operations of this language are on the same abstraction level as relational algebra operations and can be integrated with these to form a powerful and flexible query language for deductive information retrieval. We define the integration of these operations and demonstrate the usefulness of the language in terms of several sample queries
  2. Tseng, Y.-H.: Solving vocabulary problems with interactive query expansion (1998) 0.01
    0.0068065543 = product of:
      0.013613109 = sum of:
        0.013613109 = product of:
          0.027226217 = sum of:
            0.027226217 = weight(_text_:systems in 5159) [ClassicSimilarity], result of:
              0.027226217 = score(doc=5159,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1697705 = fieldWeight in 5159, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5159)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    One of the major causes of search failures in information retrieval systems is vocabulary mismatch. Presents a solution to the vocabulary problem through 2 strategies known as term suggestion (TS) and term relevance feedback (TRF). In TS, collection specific terms are extracted from the text collection. These terms and their frequencies constitute the keyword database for suggesting terms in response to users' queries. One effect of this term suggestion is that it functions as a dynamic directory if the query is a general term that contains broad meaning. In term relevance feedback, terms extracted from the top ranked documents retrieved from the previous query are shown to users for relevance feedback. In the experiment, interactive TS provides very high precision rates while achieving similar recall rates as n-gram matching. Local TRF achieves improvement in both precision and recall rate in a full text news database and degrades slightly in recall rate in bibliographic databases due to the very limited source of information for feedback. In terms of Rijsbergen's combined measure of recall and precision, both TS and TRF achieve better performance than n-gram matching, which implies that the greater improvement in precision rate compensates the slight degradation in recall rate for TS and TRF
  3. ALA / Subcommittee on Subject Relationships/Reference Structures: Final Report to the ALCTS/CCS Subject Analysis Committee (1997) 0.01
    0.0067381454 = product of:
      0.013476291 = sum of:
        0.013476291 = product of:
          0.026952581 = sum of:
            0.026952581 = weight(_text_:systems in 1800) [ClassicSimilarity], result of:
              0.026952581 = score(doc=1800,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.16806422 = fieldWeight in 1800, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1800)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The SAC Subcommittee on Subject Relationships/Reference Structures was authorized at the 1995 Midwinter Meeting and appointed shortly before Annual Conference. Its creation was one result of a discussion of how (and why) to promote the display and use of broader-term subject heading references, and its charge reads as follows: To investigate: (1) the kinds of relationships that exist between subjects, the display of which are likely to be useful to catalog users; (2) how these relationships are or could be recorded in authorities and classification formats; (3) options for how these relationships should be presented to users of online and print catalogs, indexes, lists, etc. By the summer 1996 Annual Conference, make some recommendations to SAC about how to disseminate the information and/or implement changes. At that time assess the need for additional time to investigate these issues. The Subcommittee's work on each of the imperatives in the charge was summarized in a report issued at the 1996 Annual Conference (Appendix A). Highlights of this work included the development of a taxonomy of 165 subject relationships; a demonstration that, using existing MARC coding, catalog systems could be programmed to generate references they do not currently support; and an examination of reference displays in several CD-ROM database products. Since that time, work has continued on identifying term relationships and display options; on tracking research, discussion, and implementation of subject relationships in information systems; and on compiling a list of further research needs.