Search (273 results, page 1 of 14)

  • × theme_ss:"Semantisches Umfeld in Indexierung u. Retrieval"
  1. Faaborg, A.; Lagoze, C.: Semantic browsing (2003) 0.19
    0.18505998 = product of:
      0.3084333 = sum of:
        0.032756116 = weight(_text_:retrieval in 1026) [ClassicSimilarity], result of:
          0.032756116 = score(doc=1026,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.23394634 = fieldWeight in 1026, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1026)
        0.13838558 = weight(_text_:semantic in 1026) [ClassicSimilarity], result of:
          0.13838558 = score(doc=1026,freq=10.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.71904814 = fieldWeight in 1026, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1026)
        0.13729158 = sum of:
          0.09339243 = weight(_text_:web in 1026) [ClassicSimilarity], result of:
            0.09339243 = score(doc=1026,freq=12.0), product of:
              0.15105948 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.04628742 = queryNorm
              0.6182494 = fieldWeight in 1026, product of:
                3.4641016 = tf(freq=12.0), with freq of:
                  12.0 = termFreq=12.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1026)
          0.043899145 = weight(_text_:22 in 1026) [ClassicSimilarity], result of:
            0.043899145 = score(doc=1026,freq=2.0), product of:
              0.16209066 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04628742 = queryNorm
              0.2708308 = fieldWeight in 1026, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1026)
      0.6 = coord(3/5)
    
    Abstract
    We have created software applications that allow users to both author and use Semantic Web metadata. To create and use a layer of semantic content on top of the existing Web, we have (1) implemented a user interface that expedites the task of attributing metadata to resources on the Web, and (2) augmented a Web browser to leverage this semantic metadata to provide relevant information and tasks to the user. This project provides a framework for annotating and reorganizing existing files, pages, and sites on the Web that is similar to Vannevar Bushrsquos original concepts of trail blazing and associative indexing.
    Source
    Research and advanced technology for digital libraries : 7th European Conference, proceedings / ECDL 2003, Trondheim, Norway, August 17-22, 2003
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
    Semantic Web
  2. Atanassova, I.; Bertin, M.: Semantic facets for scientific information retrieval (2014) 0.14
    0.13643564 = product of:
      0.22739272 = sum of:
        0.05673526 = weight(_text_:retrieval in 4471) [ClassicSimilarity], result of:
          0.05673526 = score(doc=4471,freq=6.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.40520695 = fieldWeight in 4471, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4471)
        0.1515938 = weight(_text_:semantic in 4471) [ClassicSimilarity], result of:
          0.1515938 = score(doc=4471,freq=12.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.78767776 = fieldWeight in 4471, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4471)
        0.019063652 = product of:
          0.038127303 = sum of:
            0.038127303 = weight(_text_:web in 4471) [ClassicSimilarity], result of:
              0.038127303 = score(doc=4471,freq=2.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.25239927 = fieldWeight in 4471, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4471)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    We present an Information Retrieval System for scientific publications that provides the possibility to filter results according to semantic facets. We use sentence-level semantic annotations that identify specific semantic relations in texts, such as methods, definitions, hypotheses, that correspond to common information needs related to scientific literature. The semantic annotations are obtained using a rule-based method that identifies linguistic clues organized into a linguistic ontology. The system is implemented using Solr Search Server and offers efficient search and navigation in scientific papers.
    Source
    Semantic Web Evaluation Challenge. SemWebEval 2014 at ESWC 2014, Anissaras, Crete, Greece, May 25-29, 2014, Revised Selected Papers. Eds.: V. Presutti et al
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  3. Brunetti, J.M.; Roberto García, R.: User-centered design and evaluation of overview components for semantic data exploration (2014) 0.13
    0.13363014 = product of:
      0.22271688 = sum of:
        0.01871778 = weight(_text_:retrieval in 1626) [ClassicSimilarity], result of:
          0.01871778 = score(doc=1626,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.13368362 = fieldWeight in 1626, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=1626)
        0.117290854 = weight(_text_:semantic in 1626) [ClassicSimilarity], result of:
          0.117290854 = score(doc=1626,freq=22.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.60944045 = fieldWeight in 1626, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.03125 = fieldNorm(doc=1626)
        0.08670825 = sum of:
          0.061623022 = weight(_text_:web in 1626) [ClassicSimilarity], result of:
            0.061623022 = score(doc=1626,freq=16.0), product of:
              0.15105948 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.04628742 = queryNorm
              0.4079388 = fieldWeight in 1626, product of:
                4.0 = tf(freq=16.0), with freq of:
                  16.0 = termFreq=16.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.03125 = fieldNorm(doc=1626)
          0.025085226 = weight(_text_:22 in 1626) [ClassicSimilarity], result of:
            0.025085226 = score(doc=1626,freq=2.0), product of:
              0.16209066 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04628742 = queryNorm
              0.15476047 = fieldWeight in 1626, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=1626)
      0.6 = coord(3/5)
    
    Abstract
    Purpose - The growing volumes of semantic data available in the web result in the need for handling the information overload phenomenon. The potential of this amount of data is enormous but in most cases it is very difficult for users to visualize, explore and use this data, especially for lay-users without experience with Semantic Web technologies. The paper aims to discuss these issues. Design/methodology/approach - The Visual Information-Seeking Mantra "Overview first, zoom and filter, then details-on-demand" proposed by Shneiderman describes how data should be presented in different stages to achieve an effective exploration. The overview is the first user task when dealing with a data set. The objective is that the user is capable of getting an idea about the overall structure of the data set. Different information architecture (IA) components supporting the overview tasks have been developed, so they are automatically generated from semantic data, and evaluated with end-users. Findings - The chosen IA components are well known to web users, as they are present in most web pages: navigation bars, site maps and site indexes. The authors complement them with Treemaps, a visualization technique for displaying hierarchical data. These components have been developed following an iterative User-Centered Design methodology. Evaluations with end-users have shown that they get easily used to them despite the fact that they are generated automatically from structured data, without requiring knowledge about the underlying semantic technologies, and that the different overview components complement each other as they focus on different information search needs. Originality/value - Obtaining semantic data sets overviews cannot be easily done with the current semantic web browsers. Overviews become difficult to achieve with large heterogeneous data sets, which is typical in the Semantic Web, because traditional IA techniques do not easily scale to large data sets. There is little or no support to obtain overview information quickly and easily at the beginning of the exploration of a new data set. This can be a serious limitation when exploring a data set for the first time, especially for lay-users. The proposal is to reuse and adapt existing IA components to provide this overview to users and show that they can be generated automatically from the thesaurus and ontologies that structure semantic data while providing a comparable user experience to traditional web sites.
    Date
    20. 1.2015 18:30:22
    Series
    Special issue: Semantic search
    Theme
    Semantic Web
    Semantisches Umfeld in Indexierung u. Retrieval
  4. Prasad, A.R.D.; Madalli, D.P.: Faceted infrastructure for semantic digital libraries (2008) 0.13
    0.13353398 = product of:
      0.22255664 = sum of:
        0.052317787 = weight(_text_:retrieval in 1905) [ClassicSimilarity], result of:
          0.052317787 = score(doc=1905,freq=10.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.37365708 = fieldWeight in 1905, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1905)
        0.13979055 = weight(_text_:semantic in 1905) [ClassicSimilarity], result of:
          0.13979055 = score(doc=1905,freq=20.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.7263483 = fieldWeight in 1905, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1905)
        0.030448299 = product of:
          0.060896598 = sum of:
            0.060896598 = weight(_text_:web in 1905) [ClassicSimilarity], result of:
              0.060896598 = score(doc=1905,freq=10.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.40312994 = fieldWeight in 1905, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1905)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Purpose - The paper aims to argue that digital library retrieval should be based on semantic representations and propose a semantic infrastructure for digital libraries. Design/methodology/approach - The approach taken is formal model based on subject representation for digital libraries. Findings - Search engines and search techniques have fallen short of user expectations as they do not give context based retrieval. Deploying semantic web technologies would lead to efficient and more precise representation of digital library content and hence better retrieval. Though digital libraries often have metadata of information resources which can be accessed through OAI-PMH, much remains to be accomplished in making digital libraries semantic web compliant. This paper presents a semantic infrastructure for digital libraries, that will go a long way in providing them and web based information services with products highly customised to users needs. Research limitations/implications - Here only a model for semantic infrastructure is proposed. This model is proposed after studying current user-centric, top-down models adopted in digital library service architectures. Originality/value - This paper gives a generic model for building semantic infrastructure for digital libraries. Faceted ontologies for digital libraries is just one approach. But the same may be adopted by groups working with different approaches in building ontologies to realise efficient retrieval in digital libraries.
    Footnote
    Beitrag eines Themenheftes "Digital libraries and the semantic web: context, applications and research".
    Theme
    Semantic Web
    Semantisches Umfeld in Indexierung u. Retrieval
  5. Lund, K.; Burgess, C.; Atchley, R.A.: Semantic and associative priming in high-dimensional semantic space (1995) 0.12
    0.12377971 = product of:
      0.2062995 = sum of:
        0.032756116 = weight(_text_:retrieval in 2151) [ClassicSimilarity], result of:
          0.032756116 = score(doc=2151,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.23394634 = fieldWeight in 2151, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2151)
        0.1515938 = weight(_text_:semantic in 2151) [ClassicSimilarity], result of:
          0.1515938 = score(doc=2151,freq=12.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.78767776 = fieldWeight in 2151, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2151)
        0.021949572 = product of:
          0.043899145 = sum of:
            0.043899145 = weight(_text_:22 in 2151) [ClassicSimilarity], result of:
              0.043899145 = score(doc=2151,freq=2.0), product of:
                0.16209066 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04628742 = queryNorm
                0.2708308 = fieldWeight in 2151, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2151)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    We present a model of semantic memory that utilizes a high dimensional semantic space constructed from a co-occurrence matrix. This matrix was formed by analyzing a lot) million word corpus. Word vectors were then obtained by extracting rows and columns of this matrix, These vectors were subjected to multidimensional scaling. Words were found to cluster semantically. suggesting that interword distance may be interpretable as a measure of semantic similarity, In attempting to replicate with our simulation the semantic and ...
    Source
    Proceedings of the Seventeenth Annual Conference of the Cognitive Science Society: July 22 - 25, 1995, University of Pittsburgh / ed. by Johanna D. Moore and Jill Fain Lehmann
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  6. Vallet, D.; Fernández, M.; Castells, P.: ¬An ontology-based information retrieval model (2005) 0.12
    0.11872692 = product of:
      0.19787818 = sum of:
        0.056153342 = weight(_text_:retrieval in 4708) [ClassicSimilarity], result of:
          0.056153342 = score(doc=4708,freq=8.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.40105087 = fieldWeight in 4708, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=4708)
        0.118616216 = weight(_text_:semantic in 4708) [ClassicSimilarity], result of:
          0.118616216 = score(doc=4708,freq=10.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.616327 = fieldWeight in 4708, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.046875 = fieldNorm(doc=4708)
        0.023108633 = product of:
          0.046217266 = sum of:
            0.046217266 = weight(_text_:web in 4708) [ClassicSimilarity], result of:
              0.046217266 = score(doc=4708,freq=4.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.3059541 = fieldWeight in 4708, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4708)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Semantic search has been one of the motivations of the Semantic Web since it was envisioned. We propose a model for the exploitation of ontologybased KBs to improve search over large document repositories. Our approach includes an ontology-based scheme for the semi-automatic annotation of documents, and a retrieval system. The retrieval model is based on an adaptation of the classic vector-space model, including an annotation weighting algorithm, and a ranking algorithm. Semantic search is combined with keyword-based search to achieve tolerance to KB incompleteness. Our proposal is illustrated with sample experiments showing improvements with respect to keyword-based search, and providing ground for further research and discussion.
    Source
    The Semantic Web: research and applications ; second European Semantic WebConference, ESWC 2005, Heraklion, Crete, Greece, May 29 - June 1, 2005 ; proceedings. Eds.: A. Gómez-Pérez u. J. Euzenat
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  7. Mäkelä, E.; Hyvönen, E.; Saarela, S.; Vilfanen, K.: Application of ontology techniques to view-based semantic serach and browsing (2012) 0.11
    0.11015203 = product of:
      0.1835867 = sum of:
        0.048630223 = weight(_text_:retrieval in 3264) [ClassicSimilarity], result of:
          0.048630223 = score(doc=3264,freq=6.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.34732026 = fieldWeight in 3264, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=3264)
        0.118616216 = weight(_text_:semantic in 3264) [ClassicSimilarity], result of:
          0.118616216 = score(doc=3264,freq=10.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.616327 = fieldWeight in 3264, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.046875 = fieldNorm(doc=3264)
        0.01634027 = product of:
          0.03268054 = sum of:
            0.03268054 = weight(_text_:web in 3264) [ClassicSimilarity], result of:
              0.03268054 = score(doc=3264,freq=2.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.21634221 = fieldWeight in 3264, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3264)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    We scho how the beenfits of the view-based search method, developed within the information retrieval community, can be extended with ontology-based search, developed within the Semantic Web community, and with semantic recommendations. As a proof of the concept, we have implemented an ontology-and view-based search engine and recommendations system Ontogaotr for RDF(S) repositories. Ontogator is innovative in two ways. Firstly, the RDFS.based ontologies used for annotating metadata are used in the user interface to facilitate view-based information retrieval. The views provide the user with an overview of the repositorys contents and a vocabulary for expressing search queries. Secondlyy, a semantic browsing function is provided by a recommender system. This system enriches instance level metadata by ontologies and provides the user with links to semantically related relevant resources. The semantic linkage is specified in terms of logical rules. To illustrate and discuss the ideas, a deployed application of Ontogator to a photo repository of the Helsinki University Museum is presented.
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  8. Zenz, G.; Zhou, X.; Minack, E.; Siberski, W.; Nejdl, W.: Interactive query construction for keyword search on the Semantic Web (2012) 0.11
    0.10994878 = product of:
      0.18324795 = sum of:
        0.023397226 = weight(_text_:retrieval in 430) [ClassicSimilarity], result of:
          0.023397226 = score(doc=430,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.16710453 = fieldWeight in 430, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=430)
        0.13261695 = weight(_text_:semantic in 430) [ClassicSimilarity], result of:
          0.13261695 = score(doc=430,freq=18.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.68907446 = fieldWeight in 430, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=430)
        0.027233787 = product of:
          0.054467574 = sum of:
            0.054467574 = weight(_text_:web in 430) [ClassicSimilarity], result of:
              0.054467574 = score(doc=430,freq=8.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.36057037 = fieldWeight in 430, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=430)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    With the advance of the semantic Web, increasing amounts of data are available in a structured and machine-understandable form. This opens opportunities for users to employ semantic queries instead of simple keyword-based ones to accurately express the information need. However, constructing semantic queries is a demanding task for human users [11]. To compose a valid semantic query, a user has to (1) master a query language (e.g., SPARQL) and (2) acquire sufficient knowledge about the ontology or the schema of the data source. While there are systems which support this task with visual tools [21, 26] or natural language interfaces [3, 13, 14, 18], the process of query construction can still be complex and time consuming. According to [24], users prefer keyword search, and struggle with the construction of semantic queries although being supported with a natural language interface. Several keyword search approaches have already been proposed to ease information seeking on semantic data [16, 32, 35] or databases [1, 31]. However, keyword queries lack the expressivity to precisely describe the user's intent. As a result, ranking can at best put query intentions of the majority on top, making it impossible to take the intentions of all users into consideration.
    Source
    Semantic search over the Web. Eds.: R. De Virgilio, et al
    Theme
    Semantic Web
    Semantisches Umfeld in Indexierung u. Retrieval
  9. Narock, T.; Zhou, L.; Yoon, V.: Semantic similarity of ontology instances using polarity mining (2013) 0.10
    0.10479774 = product of:
      0.1746629 = sum of:
        0.03970641 = weight(_text_:retrieval in 620) [ClassicSimilarity], result of:
          0.03970641 = score(doc=620,freq=4.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.2835858 = fieldWeight in 620, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=620)
        0.118616216 = weight(_text_:semantic in 620) [ClassicSimilarity], result of:
          0.118616216 = score(doc=620,freq=10.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.616327 = fieldWeight in 620, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.046875 = fieldNorm(doc=620)
        0.01634027 = product of:
          0.03268054 = sum of:
            0.03268054 = weight(_text_:web in 620) [ClassicSimilarity], result of:
              0.03268054 = score(doc=620,freq=2.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.21634221 = fieldWeight in 620, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=620)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Semantic similarity is vital to many areas, such as information retrieval. Various methods have been proposed with a focus on comparing unstructured text documents. Several of these have been enhanced with ontology; however, they have not been applied to ontology instances. With the growth in ontology instance data published online through, for example, Linked Open Data, there is an increasing need to apply semantic similarity to ontology instances. Drawing on ontology-supported polarity mining (OSPM), we propose an algorithm that enhances the computation of semantic similarity with polarity mining techniques. The algorithm is evaluated with online customer review data. The experimental results show that the proposed algorithm outperforms the baseline algorithm in multiple settings.
    Theme
    Semantic Web
    Semantisches Umfeld in Indexierung u. Retrieval
  10. Semantic search over the Web (2012) 0.10
    0.10000796 = product of:
      0.16667992 = sum of:
        0.01871778 = weight(_text_:retrieval in 411) [ClassicSimilarity], result of:
          0.01871778 = score(doc=411,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.13368362 = fieldWeight in 411, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=411)
        0.11183244 = weight(_text_:semantic in 411) [ClassicSimilarity], result of:
          0.11183244 = score(doc=411,freq=20.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.58107865 = fieldWeight in 411, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.03125 = fieldNorm(doc=411)
        0.036129702 = product of:
          0.072259404 = sum of:
            0.072259404 = weight(_text_:web in 411) [ClassicSimilarity], result of:
              0.072259404 = score(doc=411,freq=22.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.47835067 = fieldWeight in 411, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=411)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    The Web has become the world's largest database, with search being the main tool that allows organizations and individuals to exploit its huge amount of information. Search on the Web has been traditionally based on textual and structural similarities, ignoring to a large degree the semantic dimension, i.e., understanding the meaning of the query and of the document content. Combining search and semantics gives birth to the idea of semantic search. Traditional search engines have already advertised some semantic dimensions. Some of them, for instance, can enhance their generated result sets with documents that are semantically related to the query terms even though they may not include these terms. Nevertheless, the exploitation of the semantic search has not yet reached its full potential. In this book, Roberto De Virgilio, Francesco Guerra and Yannis Velegrakis present an extensive overview of the work done in Semantic Search and other related areas. They explore different technologies and solutions in depth, making their collection a valuable and stimulating reading for both academic and industrial researchers. The book is divided into three parts. The first introduces the readers to the basic notions of the Web of Data. It describes the different kinds of data that exist, their topology, and their storing and indexing techniques. The second part is dedicated to Web Search. It presents different types of search, like the exploratory or the path-oriented, alongside methods for their efficient and effective implementation. Other related topics included in this part are the use of uncertainty in query answering, the exploitation of ontologies, and the use of semantics in mashup design and operation. The focus of the third part is on linked data, and more specifically, on applying ideas originating in recommender systems on linked data management, and on techniques for the efficiently querying answering on linked data.
    Content
    Inhalt: Introduction.- Part I Introduction to Web of Data.- Topology of the Web of Data.- Storing and Indexing Massive RDF Data Sets.- Designing Exploratory Search Applications upon Web Data Sources.- Part II Search over the Web.- Path-oriented Keyword Search query over RDF.- Interactive Query Construction for Keyword Search on the SemanticWeb.- Understanding the Semantics of Keyword Queries on Relational DataWithout Accessing the Instance.- Keyword-Based Search over Semantic Data.- Semantic Link Discovery over Relational Data.- Embracing Uncertainty in Entity Linking.- The Return of the Entity-Relationship Model: Ontological Query Answering.- Linked Data Services and Semantics-enabled Mashup.- Part III Linked Data Search engines.- A Recommender System for Linked Data.- Flint: from Web Pages to Probabilistic Semantic Data.- Searching and Browsing Linked Data with SWSE.
    Theme
    Semantic Web
    Semantisches Umfeld in Indexierung u. Retrieval
  11. Rekabsaz, N. et al.: Toward optimized multimodal concept indexing (2016) 0.10
    0.09993737 = product of:
      0.16656227 = sum of:
        0.04679445 = weight(_text_:retrieval in 2751) [ClassicSimilarity], result of:
          0.04679445 = score(doc=2751,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.33420905 = fieldWeight in 2751, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.078125 = fieldNorm(doc=2751)
        0.0884113 = weight(_text_:semantic in 2751) [ClassicSimilarity], result of:
          0.0884113 = score(doc=2751,freq=2.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.45938298 = fieldWeight in 2751, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.078125 = fieldNorm(doc=2751)
        0.031356532 = product of:
          0.062713064 = sum of:
            0.062713064 = weight(_text_:22 in 2751) [ClassicSimilarity], result of:
              0.062713064 = score(doc=2751,freq=2.0), product of:
                0.16209066 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04628742 = queryNorm
                0.38690117 = fieldWeight in 2751, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2751)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Date
    1. 2.2016 18:25:22
    Source
    Semantic keyword-based search on structured data sources: First COST Action IC1302 International KEYSTONE Conference, IKC 2015, Coimbra, Portugal, September 8-9, 2015. Revised Selected Papers. Eds.: J. Cardoso et al
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  12. Kozikowski, P. et al.: Support of part-whole relations in query answering (2016) 0.10
    0.09993737 = product of:
      0.16656227 = sum of:
        0.04679445 = weight(_text_:retrieval in 2754) [ClassicSimilarity], result of:
          0.04679445 = score(doc=2754,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.33420905 = fieldWeight in 2754, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.078125 = fieldNorm(doc=2754)
        0.0884113 = weight(_text_:semantic in 2754) [ClassicSimilarity], result of:
          0.0884113 = score(doc=2754,freq=2.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.45938298 = fieldWeight in 2754, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.078125 = fieldNorm(doc=2754)
        0.031356532 = product of:
          0.062713064 = sum of:
            0.062713064 = weight(_text_:22 in 2754) [ClassicSimilarity], result of:
              0.062713064 = score(doc=2754,freq=2.0), product of:
                0.16209066 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04628742 = queryNorm
                0.38690117 = fieldWeight in 2754, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2754)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Date
    1. 2.2016 18:25:22
    Source
    Semantic keyword-based search on structured data sources: First COST Action IC1302 International KEYSTONE Conference, IKC 2015, Coimbra, Portugal, September 8-9, 2015. Revised Selected Papers. Eds.: J. Cardoso et al
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  13. Marx, E. et al.: Exploring term networks for semantic search over RDF knowledge graphs (2016) 0.10
    0.09993737 = product of:
      0.16656227 = sum of:
        0.04679445 = weight(_text_:retrieval in 3279) [ClassicSimilarity], result of:
          0.04679445 = score(doc=3279,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.33420905 = fieldWeight in 3279, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.078125 = fieldNorm(doc=3279)
        0.0884113 = weight(_text_:semantic in 3279) [ClassicSimilarity], result of:
          0.0884113 = score(doc=3279,freq=2.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.45938298 = fieldWeight in 3279, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.078125 = fieldNorm(doc=3279)
        0.031356532 = product of:
          0.062713064 = sum of:
            0.062713064 = weight(_text_:22 in 3279) [ClassicSimilarity], result of:
              0.062713064 = score(doc=3279,freq=2.0), product of:
                0.16209066 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04628742 = queryNorm
                0.38690117 = fieldWeight in 3279, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3279)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Source
    Metadata and semantics research: 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings. Eds.: E. Garoufallou
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  14. Wang, Y.-H.; Jhuo, P.-S.: ¬A semantic faceted search with rule-based inference (2009) 0.10
    0.0978199 = product of:
      0.16303316 = sum of:
        0.028076671 = weight(_text_:retrieval in 540) [ClassicSimilarity], result of:
          0.028076671 = score(doc=540,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.20052543 = fieldWeight in 540, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=540)
        0.118616216 = weight(_text_:semantic in 540) [ClassicSimilarity], result of:
          0.118616216 = score(doc=540,freq=10.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.616327 = fieldWeight in 540, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.046875 = fieldNorm(doc=540)
        0.01634027 = product of:
          0.03268054 = sum of:
            0.03268054 = weight(_text_:web in 540) [ClassicSimilarity], result of:
              0.03268054 = score(doc=540,freq=2.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.21634221 = fieldWeight in 540, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=540)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Semantic Search has become an active research of Semantic Web in recent years. The classification methodology plays a pretty critical role in the beginning of search process to disambiguate irrelevant information. However, the applications related to Folksonomy suffer from many obstacles. This study attempts to eliminate the problems resulted from Folksonomy using existing semantic technology. We also focus on how to effectively integrate heterogeneous ontologies over the Internet to acquire the integrity of domain knowledge. A faceted logic layer is abstracted in order to strengthen category framework and organize existing available ontologies according to a series of steps based on the methodology of faceted classification and ontology construction. The result showed that our approach can facilitate the integration of inconsistent or even heterogeneous ontologies. This paper also generalizes the principles of picking appropriate facets with which our facet browser completely complies so that better semantic search result can be obtained.
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  15. Jindal, V.; Bawa, S.; Batra, S.: ¬A review of ranking approaches for semantic search on Web (2014) 0.09
    0.088055015 = product of:
      0.14675835 = sum of:
        0.048630223 = weight(_text_:retrieval in 2799) [ClassicSimilarity], result of:
          0.048630223 = score(doc=2799,freq=6.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.34732026 = fieldWeight in 2799, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=2799)
        0.075019486 = weight(_text_:semantic in 2799) [ClassicSimilarity], result of:
          0.075019486 = score(doc=2799,freq=4.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.38979942 = fieldWeight in 2799, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.046875 = fieldNorm(doc=2799)
        0.023108633 = product of:
          0.046217266 = sum of:
            0.046217266 = weight(_text_:web in 2799) [ClassicSimilarity], result of:
              0.046217266 = score(doc=2799,freq=4.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.3059541 = fieldWeight in 2799, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2799)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    With ever increasing information being available to the end users, search engines have become the most powerful tools for obtaining useful information scattered on the Web. However, it is very common that even most renowned search engines return result sets with not so useful pages to the user. Research on semantic search aims to improve traditional information search and retrieval methods where the basic relevance criteria rely primarily on the presence of query keywords within the returned pages. This work is an attempt to explore different relevancy ranking approaches based on semantics which are considered appropriate for the retrieval of relevant information. In this paper, various pilot projects and their corresponding outcomes have been investigated based on methodologies adopted and their most distinctive characteristics towards ranking. An overview of selected approaches and their comparison by means of the classification criteria has been presented. With the help of this comparison, some common concepts and outstanding features have been identified.
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  16. Menczer, F.: Lexical and semantic clustering by Web links (2004) 0.09
    0.087797076 = product of:
      0.14632845 = sum of:
        0.028076671 = weight(_text_:retrieval in 3090) [ClassicSimilarity], result of:
          0.028076671 = score(doc=3090,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.20052543 = fieldWeight in 3090, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=3090)
        0.075019486 = weight(_text_:semantic in 3090) [ClassicSimilarity], result of:
          0.075019486 = score(doc=3090,freq=4.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.38979942 = fieldWeight in 3090, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.046875 = fieldNorm(doc=3090)
        0.0432323 = product of:
          0.0864646 = sum of:
            0.0864646 = weight(_text_:web in 3090) [ClassicSimilarity], result of:
              0.0864646 = score(doc=3090,freq=14.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.57238775 = fieldWeight in 3090, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3090)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Recent Web-searching and -mining tools are combining text and link analysis to improve ranking and crawling algorithms. The central assumption behind such approaches is that there is a correiation between the graph structure of the Web and the text and meaning of pages. Here I formalize and empirically evaluate two general conjectures drawing connections from link information to lexical and semantic Web content. The link-content conjecture states that a page is similar to the pages that link to it, and the link-cluster conjecture that pages about the same topic are clustered together. These conjectures are offen simply assumed to hold, and Web search tools are built an such assumptions. The present quantitative confirmation sheds light an the connection between the success of the latest Web-mining techniques and the small world topology of the Web, with encouraging implications for the design of better crawling algorithms.
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  17. Tudhope, D.; Blocks, D.; Cunliffe, D.; Binding, C.: Query expansion via conceptual distance in thesaurus indexed collections (2006) 0.09
    0.08733145 = product of:
      0.14555241 = sum of:
        0.033088673 = weight(_text_:retrieval in 2215) [ClassicSimilarity], result of:
          0.033088673 = score(doc=2215,freq=4.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.23632148 = fieldWeight in 2215, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2215)
        0.09884685 = weight(_text_:semantic in 2215) [ClassicSimilarity], result of:
          0.09884685 = score(doc=2215,freq=10.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.51360583 = fieldWeight in 2215, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2215)
        0.013616893 = product of:
          0.027233787 = sum of:
            0.027233787 = weight(_text_:web in 2215) [ClassicSimilarity], result of:
              0.027233787 = score(doc=2215,freq=2.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.18028519 = fieldWeight in 2215, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2215)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Purpose - The purpose of this paper is to explore query expansion via conceptual distance in thesaurus indexed collections Design/methodology/approach - An extract of the National Museum of Science and Industry's collections database, indexed with the Getty Art and Architecture Thesaurus (AAT), was the dataset for the research. The system architecture and algorithms for semantic closeness and the matching function are outlined. Standalone and web interfaces are described and formative qualitative user studies are discussed. One user session is discussed in detail, together with a scenario based on a related public inquiry. Findings are set in context of the literature on thesaurus-based query expansion. This paper discusses the potential of query expansion techniques using the semantic relationships in a faceted thesaurus. Findings - Thesaurus-assisted retrieval systems have potential for multi-concept descriptors, permitting very precise queries and indexing. However, indexer and searcher may differ in terminology judgments and there may not be any exactly matching results. The integration of semantic closeness in the matching function permits ranked results for multi-concept queries in thesaurus-indexed applications. An in-memory representation of the thesaurus semantic network allows a combination of automatic and interactive control of expansion and control of expansion on individual query terms. Originality/value - The application of semantic expansion to browsing may be useful in interface options where thesaurus structure is hidden.
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  18. Ma, N.; Zheng, H.T.; Xiao, X.: ¬An ontology-based latent semantic indexing approach using long short-term memory networks (2017) 0.09
    0.08717725 = product of:
      0.14529541 = sum of:
        0.023397226 = weight(_text_:retrieval in 3810) [ClassicSimilarity], result of:
          0.023397226 = score(doc=3810,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.16710453 = fieldWeight in 3810, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3810)
        0.10828129 = weight(_text_:semantic in 3810) [ClassicSimilarity], result of:
          0.10828129 = score(doc=3810,freq=12.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.56262696 = fieldWeight in 3810, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3810)
        0.013616893 = product of:
          0.027233787 = sum of:
            0.027233787 = weight(_text_:web in 3810) [ClassicSimilarity], result of:
              0.027233787 = score(doc=3810,freq=2.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.18028519 = fieldWeight in 3810, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3810)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Nowadays, online data shows an astonishing increase and the issue of semantic indexing remains an open question. Ontologies and knowledge bases have been widely used to optimize performance. However, researchers are placing increased emphasis on internal relations of ontologies but neglect latent semantic relations between ontologies and documents. They generally annotate instances mentioned in documents, which are related to concepts in ontologies. In this paper, we propose an Ontology-based Latent Semantic Indexing approach utilizing Long Short-Term Memory networks (LSTM-OLSI). We utilize an importance-aware topic model to extract document-level semantic features and leverage ontologies to extract word-level contextual features. Then we encode the above two levels of features and match their embedding vectors utilizing LSTM networks. Finally, the experimental results reveal that LSTM-OLSI outperforms existing techniques and demonstrates deep comprehension of instances and articles.
    Object
    Latent Semantic Indexing
    Source
    Web and Big Data: First International Joint Conference, APWeb-WAIM 2017, Beijing, China, July 7-9, 2017, Proceedings, Part I. Eds.: L. Chen et al
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  19. Horch, A.; Kett, H.; Weisbecker, A.: Semantische Suchsysteme für das Internet : Architekturen und Komponenten semantischer Suchmaschinen (2013) 0.09
    0.08524069 = product of:
      0.14206782 = sum of:
        0.052317787 = weight(_text_:retrieval in 4063) [ClassicSimilarity], result of:
          0.052317787 = score(doc=4063,freq=10.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.37365708 = fieldWeight in 4063, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4063)
        0.062516235 = weight(_text_:semantic in 4063) [ClassicSimilarity], result of:
          0.062516235 = score(doc=4063,freq=4.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.32483283 = fieldWeight in 4063, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4063)
        0.027233787 = product of:
          0.054467574 = sum of:
            0.054467574 = weight(_text_:web in 4063) [ClassicSimilarity], result of:
              0.054467574 = score(doc=4063,freq=8.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.36057037 = fieldWeight in 4063, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4063)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    In der heutigen Zeit nimmt die Flut an Informationen exponentiell zu. In dieser »Informationsexplosion« entsteht täglich eine unüberschaubare Menge an neuen Informationen im Web: Beispielsweise 430 deutschsprachige Artikel bei Wikipedia, 2,4 Mio. Tweets bei Twitter und 12,2 Mio. Kommentare bei Facebook. Während in Deutschland vor einigen Jahren noch Google als nahezu einzige Suchmaschine beim Zugriff auf Informationen im Web genutzt wurde, nehmen heute die u.a. in Social Media veröffentlichten Meinungen und damit die Vorauswahl sowie Bewertung von Informationen einzelner Experten und Meinungsführer an Bedeutung zu. Aber wie können themenspezifische Informationen nun effizient für konkrete Fragestellungen identifiziert und bedarfsgerecht aufbereitet und visualisiert werden? Diese Studie gibt einen Überblick über semantische Standards und Formate, die Prozesse der semantischen Suche, Methoden und Techniken semantischer Suchsysteme, Komponenten zur Entwicklung semantischer Suchmaschinen sowie den Aufbau bestehender Anwendungen. Die Studie erläutert den prinzipiellen Aufbau semantischer Suchsysteme und stellt Methoden der semantischen Suche vor. Zudem werden Softwarewerkzeuge vorgestellt, mithilfe derer einzelne Funktionalitäten von semantischen Suchmaschinen realisiert werden können. Abschließend erfolgt die Betrachtung bestehender semantischer Suchmaschinen zur Veranschaulichung der Unterschiede der Systeme im Aufbau sowie in der Funktionalität.
    RSWK
    Suchmaschine / Semantic Web / Information Retrieval
    Suchmaschine / Information Retrieval / Ranking / Datenstruktur / Kontextbezogenes System
    Subject
    Suchmaschine / Semantic Web / Information Retrieval
    Suchmaschine / Information Retrieval / Ranking / Datenstruktur / Kontextbezogenes System
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  20. Koopman, B.; Zuccon, G.; Bruza, P.; Sitbon, L.; Lawley, M.: Information retrieval as semantic inference : a graph Inference model applied to medical search (2016) 0.08
    0.08448802 = product of:
      0.14081337 = sum of:
        0.059190817 = weight(_text_:retrieval in 3260) [ClassicSimilarity], result of:
          0.059190817 = score(doc=3260,freq=20.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.42274472 = fieldWeight in 3260, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=3260)
        0.07072904 = weight(_text_:semantic in 3260) [ClassicSimilarity], result of:
          0.07072904 = score(doc=3260,freq=8.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.36750638 = fieldWeight in 3260, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.03125 = fieldNorm(doc=3260)
        0.010893514 = product of:
          0.021787029 = sum of:
            0.021787029 = weight(_text_:web in 3260) [ClassicSimilarity], result of:
              0.021787029 = score(doc=3260,freq=2.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.14422815 = fieldWeight in 3260, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3260)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    This paper presents a Graph Inference retrieval model that integrates structured knowledge resources, statistical information retrieval methods and inference in a unified framework. Key components of the model are a graph-based representation of the corpus and retrieval driven by an inference mechanism achieved as a traversal over the graph. The model is proposed to tackle the semantic gap problem-the mismatch between the raw data and the way a human being interprets it. We break down the semantic gap problem into five core issues, each requiring a specific type of inference in order to be overcome. Our model and evaluation is applied to the medical domain because search within this domain is particularly challenging and, as we show, often requires inference. In addition, this domain features both structured knowledge resources as well as unstructured text. Our evaluation shows that inference can be effective, retrieving many new relevant documents that are not retrieved by state-of-the-art information retrieval models. We show that many retrieved documents were not pooled by keyword-based search methods, prompting us to perform additional relevance assessment on these new documents. A third of the newly retrieved documents judged were found to be relevant. Our analysis provides a thorough understanding of when and how to apply inference for retrieval, including a categorisation of queries according to the effect of inference. The inference mechanism promoted recall by retrieving new relevant documents not found by previous keyword-based approaches. In addition, it promoted precision by an effective reranking of documents. When inference is used, performance gains can generally be expected on hard queries. However, inference should not be applied universally: for easy, unambiguous queries and queries with few relevant documents, inference did adversely affect effectiveness. These conclusions reflect the fact that for retrieval as inference to be effective, a careful balancing act is involved. Finally, although the Graph Inference model is developed and applied to medical search, it is a general retrieval model applicable to other areas such as web search, where an emerging research trend is to utilise structured knowledge resources for more effective semantic search.
    Source
    Information Retrieval Journal. 19(2016) no.1, S.6-37
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval

Years

Languages

  • e 228
  • d 40
  • f 2
  • chi 1
  • More… Less…

Types

  • a 235
  • el 28
  • m 19
  • r 8
  • x 4
  • p 2
  • s 2
  • More… Less…