Search (73 results, page 4 of 4)

  • × theme_ss:"Social tagging"
  • × year_i:[2010 TO 2020}
  1. Watters, C.; Nizam, N.: Knowledge organization on the Web : the emergent role of social classification (2012) 0.00
    0.0014724231 = product of:
      0.008834538 = sum of:
        0.008834538 = weight(_text_:in in 828) [ClassicSimilarity], result of:
          0.008834538 = score(doc=828,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.14877784 = fieldWeight in 828, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=828)
      0.16666667 = coord(1/6)
    
    Series
    Advances in knowledge organization; vol.13
    Source
    Categories, contexts and relations in knowledge organization: Proceedings of the Twelfth International ISKO Conference 6-9 August 2012, Mysore, India. Eds.: Neelameghan, A. u. K.S. Raghavan
  2. Fox, M.J.; Reece, A.: ¬The impossible decision : social tagging and Derrida's deconstructed hospitality (2013) 0.00
    0.0014724231 = product of:
      0.008834538 = sum of:
        0.008834538 = weight(_text_:in in 1067) [ClassicSimilarity], result of:
          0.008834538 = score(doc=1067,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.14877784 = fieldWeight in 1067, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1067)
      0.16666667 = coord(1/6)
    
    Abstract
    Knowledge organization structures are dependent upon domain-analytical processes for determining ontological imperatives. Boundary objects-terms used in multiple domains but understood differently in each-are ontological clash points. Cognitive Work Analysis is an effective qualitative methodology for domain analysis of a group of people who work together. CWA was used recently to understand the ontology of a human resources firm. Boundary objects from the taxonomy that emerged from narrative analysis are presented here for individual analysis.
  3. Rafferty, P.: Tagging (2018) 0.00
    0.0014724231 = product of:
      0.008834538 = sum of:
        0.008834538 = weight(_text_:in in 4647) [ClassicSimilarity], result of:
          0.008834538 = score(doc=4647,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.14877784 = fieldWeight in 4647, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4647)
      0.16666667 = coord(1/6)
    
    Abstract
    This article examines tagging as knowledge organization. Tagging is a kind of indexing, a process of labelling and categorizing information made to support resource discovery for users. Social tagging generally means the practice whereby internet users generate keywords to describe, categorise or comment on digital content. The value of tagging comes when social tags within a collection are aggregated and shared through a folksonomy. This article examines definitions of tagging and folksonomy, and discusses the functions, advantages and disadvantages of tagging systems in relation to knowledge organization before discussing studies that have compared tagging and conventional library-based knowledge organization systems. Approaches to disciplining tagging practice are examined and tagger motivation discussed. Finally, the article outlines current research fronts.
    Series
    Reviews of concepts in knowledge organization
  4. Naderi, H.; Rumpler, B.: PERCIRS: a system to combine personalized and collaborative information retrieval (2010) 0.00
    0.0014573209 = product of:
      0.008743925 = sum of:
        0.008743925 = weight(_text_:in in 3960) [ClassicSimilarity], result of:
          0.008743925 = score(doc=3960,freq=12.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.14725187 = fieldWeight in 3960, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=3960)
      0.16666667 = coord(1/6)
    
    Abstract
    Purpose - This paper aims to discuss and test the claim that utilization of the personalization techniques can be valuable to improve the efficiency of collaborative information retrieval (CIR) systems. Design/methodology/approach - A new personalized CIR system, called PERCIRS, is presented based on the user profile similarity calculation (UPSC) formulas. To this aim, the paper proposes several UPSC formulas as well as two techniques to evaluate them. As the proposed CIR system is personalized, it could not be evaluated by Cranfield, like evaluation techniques (e.g. TREC). Hence, this paper proposes a new user-centric mechanism, which enables PERCIRS to be evaluated. This mechanism is generic and can be used to evaluate any other personalized IR system. Findings - The results show that among the proposed UPSC formulas in this paper, the (query-document)-graph based formula is the most effective. After integrating this formula into PERCIRS and comparing it with nine other IR systems, it is concluded that the results of the system are better than the other IR systems. In addition, the paper shows that the complexity of the system is less that the complexity of the other CIR systems. Research limitations/implications - This system asks the users to explicitly rank the returned documents, while explicit ranking is still not widespread enough. However it believes that the users should actively participate in the IR process in order to aptly satisfy their needs to information. Originality/value - The value of this paper lies in combining collaborative and personalized IR, as well as introducing a mechanism which enables the personalized IR system to be evaluated. The proposed evaluation mechanism is very valuable for developers of personalized IR systems. The paper also introduces some significant user profile similarity calculation formulas, and two techniques to evaluate them. These formulas can also be used to find the user's community in the social networks.
  5. Sun, A.; Bhowmick, S.S.; Nguyen, K.T.N.; Bai, G.: Tag-based social image retrieval : an empirical evaluation (2011) 0.00
    0.0012881019 = product of:
      0.007728611 = sum of:
        0.007728611 = weight(_text_:in in 4938) [ClassicSimilarity], result of:
          0.007728611 = score(doc=4938,freq=6.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.1301535 = fieldWeight in 4938, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4938)
      0.16666667 = coord(1/6)
    
    Abstract
    Tags associated with social images are valuable information source for superior image search and retrieval experiences. Although various heuristics are valuable to boost tag-based search for images, there is a lack of general framework to study the impact of these heuristics. Specifically, the task of ranking images matching a given tag query based on their associated tags in descending order of relevance has not been well studied. In this article, we take the first step to propose a generic, flexible, and extensible framework for this task and exploit it for a systematic and comprehensive empirical evaluation of various methods for ranking images. To this end, we identified five orthogonal dimensions to quantify the matching score between a tagged image and a tag query. These five dimensions are: (i) tag relatedness to measure the degree of effectiveness of a tag describing the tagged image; (ii) tag discrimination to quantify the degree of discrimination of a tag with respect to the entire tagged image collection; (iii) tag length normalization analogous to document length normalization in web search; (iv) tag-query matching model for the matching score computation between an image tag and a query tag; and (v) query model for tag query rewriting. For each dimension, we identify a few implementations and evaluate their impact on NUS-WIDE dataset, the largest human-annotated dataset consisting of more than 269K tagged images from Flickr. We evaluated 81 single-tag queries and 443 multi-tag queries over 288 search methods and systematically compare their performances using standard metrics including Precision at top-K, Mean Average Precision (MAP), Recall, and Normalized Discounted Cumulative Gain (NDCG).
  6. Weiand, K.; Hartl, A.; Hausmann, S.; Furche, T.; Bry, F.: Keyword-based search over semantic data (2012) 0.00
    0.0012881019 = product of:
      0.007728611 = sum of:
        0.007728611 = weight(_text_:in in 432) [ClassicSimilarity], result of:
          0.007728611 = score(doc=432,freq=6.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.1301535 = fieldWeight in 432, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=432)
      0.16666667 = coord(1/6)
    
    Abstract
    For a long while, the creation of Web content required at least basic knowledge of Web technologies, meaning that for many Web users, the Web was de facto a read-only medium. This changed with the arrival of the "social Web," when Web applications started to allow users to publish Web content without technological expertise. Here, content creation is often an inclusive, iterative, and interactive process. Examples of social Web applications include blogs, social networking sites, as well as many specialized applications, for example, for saving and sharing bookmarks and publishing photos. Social semantic Web applications are social Web applications in which knowledge is expressed not only in the form of text and multimedia but also through informal to formal annotations that describe, reflect, and enhance the content. These annotations often take the shape of RDF graphs backed by ontologies, but less formal annotations such as free-form tags or tags from a controlled vocabulary may also be available. Wikis are one example of social Web applications for collecting and sharing knowledge. They allow users to easily create and edit documents, so-called wiki pages, using a Web browser. The pages in a wiki are often heavily interlinked, which makes it easy to find related information and browse the content.
  7. Syn, S.Y.; Spring, M.B.: Finding subject terms for classificatory metadata from user-generated social tags (2013) 0.00
    0.0012881019 = product of:
      0.007728611 = sum of:
        0.007728611 = weight(_text_:in in 745) [ClassicSimilarity], result of:
          0.007728611 = score(doc=745,freq=6.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.1301535 = fieldWeight in 745, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=745)
      0.16666667 = coord(1/6)
    
    Abstract
    With the increasing popularity of social tagging systems, the potential for using social tags as a source of metadata is being explored. Social tagging systems can simplify the involvement of a large number of users and improve the metadata-generation process. Current research is exploring social tagging systems as a mechanism to allow nonprofessional catalogers to participate in metadata generation. Because social tags are not from controlled vocabularies, there are issues that have to be addressed in finding quality terms to represent the content of a resource. This research explores ways to obtain a set of tags representing the resource from the tags provided by users. Two metrics are introduced. Annotation Dominance (AD) is a measure of the extent to which a tag term is agreed to by users. Cross Resources Annotation Discrimination (CRAD) is a measure of a tag's potential to classify a collection. It is designed to remove tags that are used too broadly or narrowly. Using the proposed measurements, the research selects important tags (meta-terms) and removes meaningless ones (tag noise) from the tags provided by users. To evaluate the proposed approach to find classificatory metadata candidates, we rely on expert users' relevance judgments comparing suggested tag terms and expert metadata terms. The results suggest that processing of user tags using the two measurements successfully identifies the terms that represent the topic categories of web resource content. The suggested tag terms can be further examined in various usages as semantic metadata for the resources.
  8. Chae, G.; Park, J.; Park, J.; Yeo, W.S.; Shi, C.: Linking and clustering artworks using social tags : revitalizing crowd-sourced information on cultural collections (2016) 0.00
    0.0012881019 = product of:
      0.007728611 = sum of:
        0.007728611 = weight(_text_:in in 2852) [ClassicSimilarity], result of:
          0.007728611 = score(doc=2852,freq=6.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.1301535 = fieldWeight in 2852, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2852)
      0.16666667 = coord(1/6)
    
    Abstract
    Social tagging is one of the most popular methods for collecting crowd-sourced information in galleries, libraries, archives, and museums (GLAMs). However, when the number of social tags grows rapidly, using them becomes problematic and, as a result, they are often left as simply big data that cannot be used for practical purposes. To revitalize the use of this crowd-sourced information, we propose using social tags to link and cluster artworks based on an experimental study using an online collection at the Gyeonggi Museum of Modern Art (GMoMA). We view social tagging as a folksonomy, where artworks are classified by keywords of the crowd's various interpretations and one artwork can belong to several different categories simultaneously. To leverage this strength of social tags, we used a clustering method called "link communities" to detect overlapping communities in a network of artworks constructed by computing similarities between all artwork pairs. We used this framework to identify semantic relationships and clusters of similar artworks. By comparing the clustering results with curators' manual classification results, we demonstrated the potential of social tagging data for automatically clustering artworks in a way that reflects the dynamic perspectives of crowds.
  9. Ding, Y.; Jacob, E.K.; Fried, M.; Toma, I.; Yan, E.; Foo, S.; Milojevicacute, S.: Upper tag ontology for integrating social tagging data (2010) 0.00
    0.0012620769 = product of:
      0.0075724614 = sum of:
        0.0075724614 = weight(_text_:in in 3421) [ClassicSimilarity], result of:
          0.0075724614 = score(doc=3421,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.12752387 = fieldWeight in 3421, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=3421)
      0.16666667 = coord(1/6)
    
    Abstract
    Data integration and mediation have become central concerns of information technology over the past few decades. With the advent of the Web and the rapid increases in the amount of data and the number of Web documents and users, researchers have focused on enhancing the interoperability of data through the development of metadata schemes. Other researchers have looked to the wealth of metadata generated by bookmarking sites on the Social Web. While several existing ontologies have capitalized on the semantics of metadata created by tagging activities, the Upper Tag Ontology (UTO) emphasizes the structure of tagging activities to facilitate modeling of tagging data and the integration of data from different bookmarking sites as well as the alignment of tagging ontologies. UTO is described and its utility in modeling, harvesting, integrating, searching, and analyzing data is demonstrated with metadata harvested from three major social tagging systems (Delicious, Flickr, and YouTube).
  10. Golbeck, J.; Koepfler, J.; Emmerling, B.: ¬An experimental study of social tagging behavior and image content (2011) 0.00
    0.0012620769 = product of:
      0.0075724614 = sum of:
        0.0075724614 = weight(_text_:in in 4748) [ClassicSimilarity], result of:
          0.0075724614 = score(doc=4748,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.12752387 = fieldWeight in 4748, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=4748)
      0.16666667 = coord(1/6)
    
    Abstract
    Social tags have become an important tool for improving access to online resources, particularly non-text media. With the dramatic growth of user-generated content, the importance of tags is likely to grow. However, while tagging behavior is well studied, the relationship between tagging behavior and features of the media being tagged is not well understood. In this paper, we examine the relationship between tagging behavior and image type. Through a lab-based study with 51 subjects and an analysis of an online dataset of image tags, we show that there are significant differences in the number, order, and type of tags that users assign based on their past experience with an image, the type of image being tagged, and other image features. We present these results and discuss the significant implications this work has for tag-based search algorithms, tag recommendation systems, and other interface issues.
  11. Choi, Y.: ¬A complete assessment of tagging quality : a consolidated methodology (2015) 0.00
    0.0012620769 = product of:
      0.0075724614 = sum of:
        0.0075724614 = weight(_text_:in in 1730) [ClassicSimilarity], result of:
          0.0075724614 = score(doc=1730,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.12752387 = fieldWeight in 1730, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=1730)
      0.16666667 = coord(1/6)
    
    Abstract
    This paper presents a methodological discussion of a study of tagging quality in subject indexing. The data analysis in the study was divided into 3 phases: analysis of indexing consistency, analysis of tagging effectiveness, and analysis of the semantic values of tags. To analyze indexing consistency, this study employed the vector space model-based indexing consistency measures. An analysis of tagging effectiveness with tagging exhaustivity and tag specificity was conducted to ameliorate the drawbacks of consistency analysis based on only the quantitative measures of vocabulary matching. To further investigate the semantic values of tags at various levels of specificity, a latent semantic analysis (LSA) was conducted. To test statistical significance for the relation between tag specificity and semantic quality, correlation analysis was conducted. This research demonstrates the potential of tags for web document indexing with a complete assessment of tagging quality and provides a basis for further study of the strengths and limitations of tagging.
  12. Huang, S.-L.; Lin, S.-C.; Chan, Y.-C.: Investigating effectiveness and user acceptance of semantic social tagging for knowledge sharing (2012) 0.00
    0.0012620769 = product of:
      0.0075724614 = sum of:
        0.0075724614 = weight(_text_:in in 2732) [ClassicSimilarity], result of:
          0.0075724614 = score(doc=2732,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.12752387 = fieldWeight in 2732, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2732)
      0.16666667 = coord(1/6)
    
    Abstract
    Social tagging systems enable users to assign arbitrary tags to various digital resources. However, they face vague-meaning problems when users retrieve or present resources with the keyword-based tags. In order to solve these problems, this study takes advantage of Semantic Web technology and the topological characteristics of knowledge maps to develop a system that comprises a semantic tagging mechanism and triple-pattern and visual searching mechanisms. A field experiment was conducted to evaluate the effectiveness and user acceptance of these mechanisms in a knowledge sharing context. The results show that the semantic social tagging system is more effective than a keyword-based system. The visualized knowledge map helps users capture an overview of the knowledge domain, reduce cognitive effort for the search, and obtain more enjoyment. Traditional keyword tagging with a keyword search still has the advantage of ease of use and the users had higher intention to use it. This study also proposes directions for future development of semantic social tagging systems.
  13. Yi, K.: ¬A semantic similarity approach to predicting Library of Congress subject headings for social tags (2010) 0.00
    7.4368593E-4 = product of:
      0.0044621155 = sum of:
        0.0044621155 = weight(_text_:in in 3707) [ClassicSimilarity], result of:
          0.0044621155 = score(doc=3707,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.07514416 = fieldWeight in 3707, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3707)
      0.16666667 = coord(1/6)
    
    Abstract
    Social tagging or collaborative tagging has become a new trend in the organization, management, and discovery of digital information. The rapid growth of shared information mostly controlled by social tags poses a new challenge for social tag-based information organization and retrieval. A plausible approach for this challenge is linking social tags to a controlled vocabulary. As an introductory step for this approach, this study investigates ways of predicting relevant subject headings for resources from social tags assigned to the resources. The prediction of subject headings was measured by five different similarity measures: tf-idf, cosine-based similarity (CoS), Jaccard similarity (or Jaccard coefficient; JS), Mutual information (MI), and information radius (IRad). Their results were compared to those by professionals. The results show that a CoS measure based on top five social tags was most effective. Inclusions of more social tags only aggravate the performance. The performance of JS is comparable to the performance of CoS while tf-idf is comparable with up to 70% less than the best performance. MI and IRad have inferior performance compared to the other methods. This study demonstrates the application of the similarity measuring techniques to the prediction of correct Library of Congress subject headings.

Languages

  • e 61
  • d 12

Types

  • a 67
  • el 5
  • m 3
  • s 1
  • More… Less…