Search (112 results, page 1 of 6)

  • × theme_ss:"Social tagging"
  1. Danowski, P.: Authority files and Web 2.0 : Wikipedia and the PND. An Example (2007) 0.02
    0.022735847 = product of:
      0.051155657 = sum of:
        0.01795313 = weight(_text_:retrieval in 1291) [ClassicSimilarity], result of:
          0.01795313 = score(doc=1291,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.16710453 = fieldWeight in 1291, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1291)
        0.018397098 = weight(_text_:use in 1291) [ClassicSimilarity], result of:
          0.018397098 = score(doc=1291,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.1691581 = fieldWeight in 1291, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1291)
        0.0067852763 = weight(_text_:of in 1291) [ClassicSimilarity], result of:
          0.0067852763 = score(doc=1291,freq=4.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.12216854 = fieldWeight in 1291, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1291)
        0.008020152 = product of:
          0.024060456 = sum of:
            0.024060456 = weight(_text_:22 in 1291) [ClassicSimilarity], result of:
              0.024060456 = score(doc=1291,freq=2.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.19345059 = fieldWeight in 1291, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1291)
          0.33333334 = coord(1/3)
      0.44444445 = coord(4/9)
    
    Abstract
    More and more users index everything on their own in the web 2.0. There are services for links, videos, pictures, books, encyclopaedic articles and scientific articles. All these services are library independent. But must that really be? Can't libraries help with their experience and tools to make user indexing better? On the experience of a project from German language Wikipedia together with the German person authority files (Personen Namen Datei - PND) located at German National Library (Deutsche Nationalbibliothek) I would like to show what is possible. How users can and will use the authority files, if we let them. We will take a look how the project worked and what we can learn for future projects. Conclusions - Authority files can have a role in the web 2.0 - there must be an open interface/ service for retrieval - everything that is indexed on the net with authority files can be easy integrated in a federated search - O'Reilly: You have to found ways that your data get more important that more it will be used
    Content
    Vortrag anlässlich des Workshops: "Extending the multilingual capacity of The European Library in the EDL project Stockholm, Swedish National Library, 22-23 November 2007".
  2. Golub, K.; Lykke, M.; Tudhope, D.: Enhancing social tagging with automated keywords from the Dewey Decimal Classification (2014) 0.02
    0.022481663 = product of:
      0.06744499 = sum of:
        0.031095734 = weight(_text_:retrieval in 2918) [ClassicSimilarity], result of:
          0.031095734 = score(doc=2918,freq=6.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.28943354 = fieldWeight in 2918, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2918)
        0.018397098 = weight(_text_:use in 2918) [ClassicSimilarity], result of:
          0.018397098 = score(doc=2918,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.1691581 = fieldWeight in 2918, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2918)
        0.017952153 = weight(_text_:of in 2918) [ClassicSimilarity], result of:
          0.017952153 = score(doc=2918,freq=28.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.32322758 = fieldWeight in 2918, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2918)
      0.33333334 = coord(3/9)
    
    Abstract
    Purpose - The purpose of this paper is to explore the potential of applying the Dewey Decimal Classification (DDC) as an established knowledge organization system (KOS) for enhancing social tagging, with the ultimate purpose of improving subject indexing and information retrieval. Design/methodology/approach - Over 11.000 Intute metadata records in politics were used. Totally, 28 politics students were each given four tasks, in which a total of 60 resources were tagged in two different configurations, one with uncontrolled social tags only and another with uncontrolled social tags as well as suggestions from a controlled vocabulary. The controlled vocabulary was DDC comprising also mappings from the Library of Congress Subject Headings. Findings - The results demonstrate the importance of controlled vocabulary suggestions for indexing and retrieval: to help produce ideas of which tags to use, to make it easier to find focus for the tagging, to ensure consistency and to increase the number of access points in retrieval. The value and usefulness of the suggestions proved to be dependent on the quality of the suggestions, both as to conceptual relevance to the user and as to appropriateness of the terminology. Originality/value - No research has investigated the enhancement of social tagging with suggestions from the DDC, an established KOS, in a user trial, comparing social tagging only and social tagging enhanced with the suggestions. This paper is a final reflection on all aspects of the study.
    Source
    Journal of documentation. 70(2014) no.5, S.801-828
  3. Kipp, M.E.I.: Searching with tags : do tags help users find things? (2008) 0.02
    0.0222892 = product of:
      0.0668676 = sum of:
        0.021543756 = weight(_text_:retrieval in 2278) [ClassicSimilarity], result of:
          0.021543756 = score(doc=2278,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.20052543 = fieldWeight in 2278, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=2278)
        0.031220913 = weight(_text_:use in 2278) [ClassicSimilarity], result of:
          0.031220913 = score(doc=2278,freq=4.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.2870708 = fieldWeight in 2278, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.046875 = fieldNorm(doc=2278)
        0.01410293 = weight(_text_:of in 2278) [ClassicSimilarity], result of:
          0.01410293 = score(doc=2278,freq=12.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.25392252 = fieldWeight in 2278, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2278)
      0.33333334 = coord(3/9)
    
    Content
    This study examines the question of whether tags can be useful in the process of information retrieval. Participants were asked to search a social bookmarking tool specialising in academic articles (CiteULike) and an online journal database (Pubmed) in order to determine if users found tags were useful in their search process. The actions of each participants were captured using screen capture software and they were asked to describe their search process. The preliminary study showed that users did indeed make use of tags in their search process, as a guide to searching and as hyperlinks to potentially useful articles. However, users also made use of controlled vocabularies in the journal database.
    Source
    Culture and identity in knowledge organization: Proceedings of the Tenth International ISKO Conference 5-8 August 2008, Montreal, Canada. Ed. by Clément Arsenault and Joseph T. Tennis
  4. Bentley, C.M.; Labelle, P.R.: ¬A comparison of social tagging designs and user participation (2008) 0.02
    0.022159124 = product of:
      0.049858026 = sum of:
        0.014362504 = weight(_text_:retrieval in 2657) [ClassicSimilarity], result of:
          0.014362504 = score(doc=2657,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.13368362 = fieldWeight in 2657, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=2657)
        0.014717679 = weight(_text_:use in 2657) [ClassicSimilarity], result of:
          0.014717679 = score(doc=2657,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.13532647 = fieldWeight in 2657, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.03125 = fieldNorm(doc=2657)
        0.014361722 = weight(_text_:of in 2657) [ClassicSimilarity], result of:
          0.014361722 = score(doc=2657,freq=28.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.25858206 = fieldWeight in 2657, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=2657)
        0.0064161215 = product of:
          0.019248364 = sum of:
            0.019248364 = weight(_text_:22 in 2657) [ClassicSimilarity], result of:
              0.019248364 = score(doc=2657,freq=2.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.15476047 = fieldWeight in 2657, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2657)
          0.33333334 = coord(1/3)
      0.44444445 = coord(4/9)
    
    Abstract
    Social tagging empowers users to categorize content in a personally meaningful way while harnessing their potential to contribute to a collaborative construction of knowledge (Vander Wal, 2007). In addition, social tagging systems offer innovative filtering mechanisms that facilitate resource discovery and browsing (Mathes, 2004). As a result, social tags may support online communication, informal or intended learning as well as the development of online communities. The purpose of this mixed methods study is to examine how undergraduate students participate in social tagging activities in order to learn about their motivations, behaviours and practices. A better understanding of their knowledge, habits and interactions with such systems will help practitioners and developers identify important factors when designing enhancements. In the first phase of the study, students enrolled at a Canadian university completed 103 questionnaires. Quantitative results focusing on general familiarity with social tagging, frequently used Web 2.0 sites, and the purpose for engaging in social tagging activities were compiled. Eight questionnaire respondents participated in follow-up semi-structured interviews that further explored tagging practices by situating questionnaire responses within concrete experiences using popular websites such as YouTube, Facebook, Del.icio.us, and Flickr. Preliminary results of this study echo findings found in the growing literature concerning social tagging from the fields of computer science (Sen et al., 2006) and information science (Golder & Huberman, 2006; Macgregor & McCulloch, 2006). Generally, two classes of social taggers emerge: those who focus on tagging for individual purposes, and those who view tagging as a way to share or communicate meaning to others. Heavy del.icio.us users, for example, were often focused on simply organizing their own content, and seemed to be conscientiously maintaining their own personally relevant categorizations while, in many cases, placing little importance on the tags of others. Conversely, users tagging items primarily to share content preferred to use specific terms to optimize retrieval and discovery by others. Our findings should inform practitioners of how interaction design can be tailored for different tagging systems applications, and how these findings are positioned within the current debate surrounding social tagging among the resource discovery community. We also hope to direct future research in the field to place a greater importance on exploring the benefits of tagging as a socially-driven endeavour rather than uniquely as a means of managing information.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  5. Chen, M.; Liu, X.; Qin, J.: Semantic relation extraction from socially-generated tags : a methodology for metadata generation (2008) 0.02
    0.021783894 = product of:
      0.06535168 = sum of:
        0.01795313 = weight(_text_:retrieval in 2648) [ClassicSimilarity], result of:
          0.01795313 = score(doc=2648,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.16710453 = fieldWeight in 2648, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2648)
        0.015172338 = weight(_text_:of in 2648) [ClassicSimilarity], result of:
          0.015172338 = score(doc=2648,freq=20.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.27317715 = fieldWeight in 2648, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2648)
        0.032226212 = product of:
          0.048339315 = sum of:
            0.02427886 = weight(_text_:29 in 2648) [ClassicSimilarity], result of:
              0.02427886 = score(doc=2648,freq=2.0), product of:
                0.12493842 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.035517205 = queryNorm
                0.19432661 = fieldWeight in 2648, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2648)
            0.024060456 = weight(_text_:22 in 2648) [ClassicSimilarity], result of:
              0.024060456 = score(doc=2648,freq=2.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.19345059 = fieldWeight in 2648, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2648)
          0.6666667 = coord(2/3)
      0.33333334 = coord(3/9)
    
    Abstract
    The growing predominance of social semantics in the form of tagging presents the metadata community with both opportunities and challenges as for leveraging this new form of information content representation and for retrieval. One key challenge is the absence of contextual information associated with these tags. This paper presents an experiment working with Flickr tags as an example of utilizing social semantics sources for enriching subject metadata. The procedure included four steps: 1) Collecting a sample of Flickr tags, 2) Calculating cooccurrences between tags through mutual information, 3) Tracing contextual information of tag pairs via Google search results, 4) Applying natural language processing and machine learning techniques to extract semantic relations between tags. The experiment helped us to build a context sentence collection from the Google search results, which was then processed by natural language processing and machine learning algorithms. This new approach achieved a reasonably good rate of accuracy in assigning semantic relations to tag pairs. This paper also explores the implications of this approach for using social semantics to enrich subject metadata.
    Date
    20. 2.2009 10:29:07
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  6. Corrado, E.; Moulaison, H.L.: Social tagging and communities of practice : two case studies (2008) 0.02
    0.021740563 = product of:
      0.06522169 = sum of:
        0.038237654 = weight(_text_:use in 2271) [ClassicSimilarity], result of:
          0.038237654 = score(doc=2271,freq=6.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.35158852 = fieldWeight in 2271, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.046875 = fieldNorm(doc=2271)
        0.017272491 = weight(_text_:of in 2271) [ClassicSimilarity], result of:
          0.017272491 = score(doc=2271,freq=18.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.3109903 = fieldWeight in 2271, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2271)
        0.009711544 = product of:
          0.029134631 = sum of:
            0.029134631 = weight(_text_:29 in 2271) [ClassicSimilarity], result of:
              0.029134631 = score(doc=2271,freq=2.0), product of:
                0.12493842 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.035517205 = queryNorm
                0.23319192 = fieldWeight in 2271, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2271)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Content
    In investigating the use of social tagging for knowledge organization and sharing, this paper reports on two case studies. Each study examines how two disparate communities of practices utilize social tagging to disseminate information to other community members in the online environment. Through the use of these tags, community members may retrieve and view relevant Web sites and online videos. The first study looks at tagging within the Code4Lib community of practice. The second study examines the use of tagging on video sharing sites used by a community of French teenagers. Uses of social tagging to share information within these communities are analyzed and discussed, and recommendations for future study are provided.
    Date
    27.12.2008 11:20:29
    Source
    Culture and identity in knowledge organization: Proceedings of the Tenth International ISKO Conference 5-8 August 2008, Montreal, Canada. Ed. by Clément Arsenault and Joseph T. Tennis
  7. Golub, K.; Moon, J.; Nielsen, M.L.; Tudhope, D.: EnTag: Enhanced Tagging for Discovery (2008) 0.02
    0.02084155 = product of:
      0.06252465 = sum of:
        0.02513438 = weight(_text_:retrieval in 2294) [ClassicSimilarity], result of:
          0.02513438 = score(doc=2294,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.23394634 = fieldWeight in 2294, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2294)
        0.025755936 = weight(_text_:use in 2294) [ClassicSimilarity], result of:
          0.025755936 = score(doc=2294,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.23682132 = fieldWeight in 2294, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2294)
        0.011634325 = weight(_text_:of in 2294) [ClassicSimilarity], result of:
          0.011634325 = score(doc=2294,freq=6.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.20947541 = fieldWeight in 2294, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2294)
      0.33333334 = coord(3/9)
    
    Abstract
    Purpose: Investigate the combination of controlled and folksonomy approaches to support resource discovery in repositories and digital collections. Aim: Investigate whether use of an established controlled vocabulary can help improve social tagging for better resource discovery. Objectives: (1) Investigate indexing aspects when using only social tagging versus when using social tagging with suggestions from a controlled vocabulary; (2) Investigate above in two different contexts: tagging by readers and tagging by authors; (3) Investigate influence of only social tagging versus social tagging with a controlled vocabulary on retrieval. - Vgl.: http://www.ukoln.ac.uk/projects/enhanced-tagging/.
  8. Qin, C.; Liu, Y.; Mou, J.; Chen, J.: User adoption of a hybrid social tagging approach in an online knowledge community (2019) 0.02
    0.019461634 = product of:
      0.0583849 = sum of:
        0.036794197 = weight(_text_:use in 5492) [ClassicSimilarity], result of:
          0.036794197 = score(doc=5492,freq=8.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.3383162 = fieldWeight in 5492, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5492)
        0.013570553 = weight(_text_:of in 5492) [ClassicSimilarity], result of:
          0.013570553 = score(doc=5492,freq=16.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.24433708 = fieldWeight in 5492, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5492)
        0.008020152 = product of:
          0.024060456 = sum of:
            0.024060456 = weight(_text_:22 in 5492) [ClassicSimilarity], result of:
              0.024060456 = score(doc=5492,freq=2.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.19345059 = fieldWeight in 5492, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5492)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    Purpose Online knowledge communities make great contributions to global knowledge sharing and innovation. Resource tagging approaches have been widely adopted in such communities to describe, annotate and organize knowledge resources mainly through users' participation. However, it is unclear what causes the adoption of a particular resource tagging approach. The purpose of this paper is to identify factors that drive users to use a hybrid social tagging approach. Design/methodology/approach Technology acceptance model and social cognitive theory are adopted to support an integrated model proposed in this paper. Zhihu, one of the most popular online knowledge communities in China, is taken as the survey context. A survey was conducted with a questionnaire and collected data were analyzed through structural equation model. Findings A new hybrid social resource tagging approach was refined and described. The empirical results revealed that self-efficacy, perceived usefulness (PU) and perceived ease of use exert positive effect on users' attitude. Moreover, social influence, PU and attitude impact significantly on users' intention to use a hybrid social resource tagging approach. Originality/value Theoretically, this study enriches the type of resource tagging approaches and recognizes factors influencing user adoption to use it. Regarding the practical parts, the results provide online information system providers and designers with referential strategies to improve the performance of the current tagging approaches and promote them.
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 71(2019) no.2, S.155-175
  9. Kruk, S.R.; Kruk, E.; Stankiewicz, K.: Evaluation of semantic and social technologies for digital libraries (2009) 0.02
    0.019043252 = product of:
      0.057129756 = sum of:
        0.031220913 = weight(_text_:use in 3387) [ClassicSimilarity], result of:
          0.031220913 = score(doc=3387,freq=4.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.2870708 = fieldWeight in 3387, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.046875 = fieldNorm(doc=3387)
        0.016284661 = weight(_text_:of in 3387) [ClassicSimilarity], result of:
          0.016284661 = score(doc=3387,freq=16.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.2932045 = fieldWeight in 3387, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3387)
        0.009624182 = product of:
          0.028872546 = sum of:
            0.028872546 = weight(_text_:22 in 3387) [ClassicSimilarity], result of:
              0.028872546 = score(doc=3387,freq=2.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.23214069 = fieldWeight in 3387, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3387)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    Libraries are the tools we use to learn and to answer our questions. The quality of our work depends, among others, on the quality of the tools we use. Recent research in digital libraries is focused, on one hand on improving the infrastructure of the digital library management systems (DLMS), and on the other on improving the metadata models used to annotate collections of objects maintained by DLMS. The latter includes, among others, the semantic web and social networking technologies. Recently, the semantic web and social networking technologies are being introduced to the digital libraries domain. The expected outcome is that the overall quality of information discovery in digital libraries can be improved by employing social and semantic technologies. In this chapter we present the results of an evaluation of social and semantic end-user information discovery services for the digital libraries.
    Date
    1. 8.2010 12:35:22
  10. Furner, J.: User tagging of library resources : toward a framework for system evaluation (2007) 0.02
    0.017851332 = product of:
      0.053553995 = sum of:
        0.021543756 = weight(_text_:retrieval in 703) [ClassicSimilarity], result of:
          0.021543756 = score(doc=703,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.20052543 = fieldWeight in 703, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=703)
        0.022298694 = weight(_text_:of in 703) [ClassicSimilarity], result of:
          0.022298694 = score(doc=703,freq=30.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.4014868 = fieldWeight in 703, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=703)
        0.009711544 = product of:
          0.029134631 = sum of:
            0.029134631 = weight(_text_:29 in 703) [ClassicSimilarity], result of:
              0.029134631 = score(doc=703,freq=2.0), product of:
                0.12493842 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.035517205 = queryNorm
                0.23319192 = fieldWeight in 703, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=703)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    Although user tagging of library resources shows substantial promise as a means of improving the quality of users' access to those resources, several important questions about the level and nature of the warrant for basing retrieval tools on user tagging are yet to receive full consideration by library practitioners and researchers. Among these is the simple evaluative question: What, specifically, are the factors that determine whether or not user-tagging services will be successful? If success is to be defined in terms of the effectiveness with which systems perform the particular functions expected of them (rather than simply in terms of popularity), an understanding is needed both of the multifunctional nature of tagging tools, and of the complex nature of users' mental models of that multifunctionality. In this paper, a conceptual framework is developed for the evaluation of systems that integrate user tagging with more traditional methods of library resource description.
    Date
    26.12.2011 13:29:31
  11. Strader, C.R.: Author-assigned keywords versus Library of Congress Subject Headings : implications for the cataloging of electronic theses and dissertations (2009) 0.02
    0.017486552 = product of:
      0.052459653 = sum of:
        0.022076517 = weight(_text_:use in 3602) [ClassicSimilarity], result of:
          0.022076517 = score(doc=3602,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.20298971 = fieldWeight in 3602, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.046875 = fieldNorm(doc=3602)
        0.020758953 = weight(_text_:of in 3602) [ClassicSimilarity], result of:
          0.020758953 = score(doc=3602,freq=26.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.37376386 = fieldWeight in 3602, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3602)
        0.009624182 = product of:
          0.028872546 = sum of:
            0.028872546 = weight(_text_:22 in 3602) [ClassicSimilarity], result of:
              0.028872546 = score(doc=3602,freq=2.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.23214069 = fieldWeight in 3602, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3602)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    This study is an examination of the overlap between author-assigned keywords and cataloger-assigned Library of Congress Subject Headings (LCSH) for a set of electronic theses and dissertations in Ohio State University's online catalog. The project is intended to contribute to the literature on the issue of keywords versus controlled vocabularies in the use of online catalogs and databases. Findings support previous studies' conclusions that both keywords and controlled vocabularies complement one another. Further, even in the presence of bibliographic record enhancements, such as abstracts or summaries, keywords and subject headings provided a significant number of unique terms that could affect the success of keyword searches. Implications for the maintenance of controlled vocabularies such as LCSH also are discussed in light of the patterns of matches and nonmatches found between the keywords and their corresponding subject headings.
    Date
    10. 9.2000 17:38:22
  12. Kipp, M.E.I.; Campbell, D.G.: Searching with tags : do tags help users find things? (2010) 0.02
    0.01664026 = product of:
      0.049920782 = sum of:
        0.01795313 = weight(_text_:retrieval in 4064) [ClassicSimilarity], result of:
          0.01795313 = score(doc=4064,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.16710453 = fieldWeight in 4064, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4064)
        0.018397098 = weight(_text_:use in 4064) [ClassicSimilarity], result of:
          0.018397098 = score(doc=4064,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.1691581 = fieldWeight in 4064, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4064)
        0.013570553 = weight(_text_:of in 4064) [ClassicSimilarity], result of:
          0.013570553 = score(doc=4064,freq=16.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.24433708 = fieldWeight in 4064, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4064)
      0.33333334 = coord(3/9)
    
    Abstract
    The question of whether tags can be useful in the process of information retrieval was examined in this pilot study. Many tags are subject related and could work well as index terms or entry vocabulary; however, folksonomies also include relationships that are traditionally not included in controlled vocabularies including affective or time and task related tags and the user name of the tagger. Participants searched a social bookmarking tool, specialising in academic articles (CiteULike), and an online journal database (Pubmed) for articles relevant to a given information request. Screen capture software was used to collect participant actions and a semi-structured interview asked them to describe their search process. Preliminary results showed that participants did use tags in their search process, as a guide to searching and as hyperlinks to potentially useful articles. However, participants also used controlled vocabularies in the journal database to locate useful search terms and links to related articles supplied by Pubmed. Additionally, participants reported using user names of taggers and group names to help select resources by relevance. The inclusion of subjective and social information from the taggers is very different from the traditional objectivity of indexing and was reported as an asset by a number of participants. This study suggests that while users value social and subjective factors when searching, they also find utility in objective factors such as subject headings. Most importantly, users are interested in the ability of systems to connect them with related articles whether via subject access or other means.
  13. Hsu, M.-H.; Chen, H.-H.: Efficient and effective prediction of social tags to enhance Web search (2011) 0.02
    0.016348107 = product of:
      0.04904432 = sum of:
        0.01795313 = weight(_text_:retrieval in 4625) [ClassicSimilarity], result of:
          0.01795313 = score(doc=4625,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.16710453 = fieldWeight in 4625, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4625)
        0.018397098 = weight(_text_:use in 4625) [ClassicSimilarity], result of:
          0.018397098 = score(doc=4625,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.1691581 = fieldWeight in 4625, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4625)
        0.012694089 = weight(_text_:of in 4625) [ClassicSimilarity], result of:
          0.012694089 = score(doc=4625,freq=14.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.22855641 = fieldWeight in 4625, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4625)
      0.33333334 = coord(3/9)
    
    Abstract
    As the web has grown into an integral part of daily life, social annotation has become a popular manner for web users to manage resources. This method of management has many potential applications, but it is limited in applicability by the cold-start problem, especially for new resources on the web. In this article, we study automatic tag prediction for web pages comprehensively and utilize the predicted tags to improve search performance. First, we explore the stabilizing phenomenon of tag usage in a social bookmarking system. Then, we propose a two-stage tag prediction approach, which is efficient and is effective in making use of early annotations from users. In the first stage, content-based ranking, candidate tags are selected and ranked to generate an initial tag list. In the second stage, random-walk re-ranking, we adopt a random-walk model that utilizes tag co-occurrence information to re-rank the initial list. The experimental results show that our algorithm effectively proposes appropriate tags for target web pages. In addition, we present a framework to incorporate tag prediction in a general web search. The experimental results of the web search validate the hypothesis that the proposed framework significantly enhances the typical retrieval model.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.8, S.1473-1487
  14. Yi, K.: Harnessing collective intelligence in social tagging using Delicious (2012) 0.02
    0.015251864 = product of:
      0.04575559 = sum of:
        0.01795313 = weight(_text_:retrieval in 515) [ClassicSimilarity], result of:
          0.01795313 = score(doc=515,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.16710453 = fieldWeight in 515, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=515)
        0.01978231 = weight(_text_:of in 515) [ClassicSimilarity], result of:
          0.01978231 = score(doc=515,freq=34.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.35617945 = fieldWeight in 515, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=515)
        0.008020152 = product of:
          0.024060456 = sum of:
            0.024060456 = weight(_text_:22 in 515) [ClassicSimilarity], result of:
              0.024060456 = score(doc=515,freq=2.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.19345059 = fieldWeight in 515, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=515)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    A new collaborative approach in information organization and sharing has recently arisen, known as collaborative tagging or social indexing. A key element of collaborative tagging is the concept of collective intelligence (CI), which is a shared intelligence among all participants. This research investigates the phenomenon of social tagging in the context of CI with the aim to serve as a stepping-stone towards the mining of truly valuable social tags for web resources. This study focuses on assessing and evaluating the degree of CI embedded in social tagging over time in terms of two-parameter values, number of participants, and top frequency ranking window. Five different metrics were adopted and utilized for assessing the similarity between ranking lists: overlapList, overlapRank, Footrule, Fagin's measure, and the Inverse Rank measure. The result of this study demonstrates that a substantial degree of CI is most likely to be achieved when somewhere between the first 200 and 400 people have participated in tagging, and that a target degree of CI can be projected by controlling the two factors along with the selection of a similarity metric. The study also tests some experimental conditions for detecting social tags with high CI degree. The results of this study can be applicable to the study of filtering social tags based on CI; filtered social tags may be utilized for the metadata creation of tagged resources and possibly for the retrieval of tagged resources.
    Date
    25.12.2012 15:22:37
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.12, S.2488-2502
  15. Matthews, B.; Jones, C.; Puzon, B.; Moon, J.; Tudhope, D.; Golub, K.; Nielsen, M.L.: ¬An evaluation of enhancing social tagging with a knowledge organization system (2010) 0.01
    0.014448404 = product of:
      0.043345213 = sum of:
        0.01795313 = weight(_text_:retrieval in 4171) [ClassicSimilarity], result of:
          0.01795313 = score(doc=4171,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.16710453 = fieldWeight in 4171, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4171)
        0.017299127 = weight(_text_:of in 4171) [ClassicSimilarity], result of:
          0.017299127 = score(doc=4171,freq=26.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.31146988 = fieldWeight in 4171, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4171)
        0.008092954 = product of:
          0.02427886 = sum of:
            0.02427886 = weight(_text_:29 in 4171) [ClassicSimilarity], result of:
              0.02427886 = score(doc=4171,freq=2.0), product of:
                0.12493842 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.035517205 = queryNorm
                0.19432661 = fieldWeight in 4171, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4171)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    Purpose - Traditional subject indexing and classification are considered infeasible in many digital collections. This paper seeks to investigate ways of enhancing social tagging via knowledge organization systems, with a view to improving the quality of tags for increased information discovery and retrieval performance. Design/methodology/approach - Enhanced tagging interfaces were developed for exemplar online repositories, and trials were undertaken with author and reader groups to evaluate the effectiveness of tagging augmented with control vocabulary for subject indexing of papers in online repositories. Findings - The results showed that using a knowledge organisation system to augment tagging does appear to increase the effectiveness of non-specialist users (that is, without information science training) in subject indexing. Research limitations/implications - While limited by the size and scope of the trials undertaken, these results do point to the usefulness of a mixed approach in supporting the subject indexing of online resources. Originality/value - The value of this work is as a guide to future developments in the practical support for resource indexing in online repositories.
    Date
    29. 8.2010 11:39:20
    Footnote
    Beitrag in einem Special Issue: Content architecture: exploiting and managing diverse resources: proceedings of the first national conference of the United Kingdom chapter of the International Society for Knowedge Organization (ISKO)
  16. Catarino, M.E.; Baptista, A.A.: Relating folksonomies with Dublin Core (2008) 0.01
    0.014144465 = product of:
      0.042433396 = sum of:
        0.018397098 = weight(_text_:use in 2652) [ClassicSimilarity], result of:
          0.018397098 = score(doc=2652,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.1691581 = fieldWeight in 2652, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2652)
        0.012694089 = weight(_text_:of in 2652) [ClassicSimilarity], result of:
          0.012694089 = score(doc=2652,freq=14.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.22855641 = fieldWeight in 2652, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2652)
        0.011342208 = product of:
          0.034026623 = sum of:
            0.034026623 = weight(_text_:22 in 2652) [ClassicSimilarity], result of:
              0.034026623 = score(doc=2652,freq=4.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.27358043 = fieldWeight in 2652, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2652)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    Folksonomy is the result of describing Web resources with tags created by Web users. Although it has become a popular application for the description of resources, in general terms Folksonomies are not being conveniently integrated in metadata. However, if the appropriate metadata elements are identified, then further work may be conducted to automatically assign tags to these elements (RDF properties) and use them in Semantic Web applications. This article presents research carried out to continue the project Kinds of Tags, which intends to identify elements required for metadata originating from folksonomies and to propose an application profile for DC Social Tagging. The work provides information that may be used by software applications to assign tags to metadata elements and, therefore, means for tags to be conveniently gathered by metadata interoperability tools. Despite the unquestionably high value of DC and the significance of the already existing properties in DC Terms, the pilot study show revealed a significant number of tags for which no corresponding properties yet existed. A need for new properties, such as Action, Depth, Rate, and Utility was determined. Those potential new properties will have to be validated in a later stage by the DC Social Tagging Community.
    Pages
    S.14-22
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  17. Naderi, H.; Rumpler, B.: PERCIRS: a system to combine personalized and collaborative information retrieval (2010) 0.01
    0.012547484 = product of:
      0.03764245 = sum of:
        0.020311646 = weight(_text_:retrieval in 3960) [ClassicSimilarity], result of:
          0.020311646 = score(doc=3960,freq=4.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.18905719 = fieldWeight in 3960, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=3960)
        0.010856442 = weight(_text_:of in 3960) [ClassicSimilarity], result of:
          0.010856442 = score(doc=3960,freq=16.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.19546966 = fieldWeight in 3960, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=3960)
        0.006474362 = product of:
          0.019423086 = sum of:
            0.019423086 = weight(_text_:29 in 3960) [ClassicSimilarity], result of:
              0.019423086 = score(doc=3960,freq=2.0), product of:
                0.12493842 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.035517205 = queryNorm
                0.15546128 = fieldWeight in 3960, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3960)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    Purpose - This paper aims to discuss and test the claim that utilization of the personalization techniques can be valuable to improve the efficiency of collaborative information retrieval (CIR) systems. Design/methodology/approach - A new personalized CIR system, called PERCIRS, is presented based on the user profile similarity calculation (UPSC) formulas. To this aim, the paper proposes several UPSC formulas as well as two techniques to evaluate them. As the proposed CIR system is personalized, it could not be evaluated by Cranfield, like evaluation techniques (e.g. TREC). Hence, this paper proposes a new user-centric mechanism, which enables PERCIRS to be evaluated. This mechanism is generic and can be used to evaluate any other personalized IR system. Findings - The results show that among the proposed UPSC formulas in this paper, the (query-document)-graph based formula is the most effective. After integrating this formula into PERCIRS and comparing it with nine other IR systems, it is concluded that the results of the system are better than the other IR systems. In addition, the paper shows that the complexity of the system is less that the complexity of the other CIR systems. Research limitations/implications - This system asks the users to explicitly rank the returned documents, while explicit ranking is still not widespread enough. However it believes that the users should actively participate in the IR process in order to aptly satisfy their needs to information. Originality/value - The value of this paper lies in combining collaborative and personalized IR, as well as introducing a mechanism which enables the personalized IR system to be evaluated. The proposed evaluation mechanism is very valuable for developers of personalized IR systems. The paper also introduces some significant user profile similarity calculation formulas, and two techniques to evaluate them. These formulas can also be used to find the user's community in the social networks.
    Date
    29. 8.2010 12:59:10
    Source
    Journal of documentation. 66(2010) no.4, S.532-562
  18. Konkova, E.; Göker, A.; Butterworth, R.; MacFarlane, A.: Social tagging: exploring the image, the tags, and the game (2014) 0.01
    0.012435926 = product of:
      0.05596167 = sum of:
        0.043087512 = weight(_text_:retrieval in 1370) [ClassicSimilarity], result of:
          0.043087512 = score(doc=1370,freq=8.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.40105087 = fieldWeight in 1370, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=1370)
        0.012874156 = weight(_text_:of in 1370) [ClassicSimilarity], result of:
          0.012874156 = score(doc=1370,freq=10.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.23179851 = fieldWeight in 1370, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1370)
      0.22222222 = coord(2/9)
    
    Abstract
    Large image collections on the Web need to be organized for effective retrieval. Metadata has a key role in image retrieval but rely on professionally assigned tags which is not a viable option. Current content-based image retrieval systems have not demonstrated sufficient utility on large-scale image sources on the web, and are usually used as a supplement to existing text-based image retrieval systems. We present two social tagging alternatives in the form of photo-sharing networks and image labeling games. Here we analyze these applications to evaluate their usefulness from the semantic point of view, investigating the management of social tagging for indexing. The findings of the study have shown that social tagging can generate a sizeable number of tags that can be classified as in terpretive for an image, and that tagging behaviour has a manageable and adjustable nature depending on tagging guidelines.
  19. Vander Wal, T.: Welcome to the Matrix! (2008) 0.01
    0.011999866 = product of:
      0.035999596 = sum of:
        0.014717679 = weight(_text_:use in 2881) [ClassicSimilarity], result of:
          0.014717679 = score(doc=2881,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.13532647 = fieldWeight in 2881, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.03125 = fieldNorm(doc=2881)
        0.014865796 = weight(_text_:of in 2881) [ClassicSimilarity], result of:
          0.014865796 = score(doc=2881,freq=30.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.26765788 = fieldWeight in 2881, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=2881)
        0.0064161215 = product of:
          0.019248364 = sum of:
            0.019248364 = weight(_text_:22 in 2881) [ClassicSimilarity], result of:
              0.019248364 = score(doc=2881,freq=2.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.15476047 = fieldWeight in 2881, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2881)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    My keynote at the workshop "Social Tagging in Knowledge Organization" was a great opportunity to make and share new experiences. For the first time ever, I sat in my office at home and gave a live web video presentation to a conference audience elsewhere on the globe. At the same time, it was also an opportunity to premier my conceptual model "Matrix of Perception" to an interdisciplinary audience of researchers and practitioners with a variety of backgrounds - reaching from philosophy, psychology, pedagogy and computation to library science and economics. The interdisciplinary approach of the conference is also mirrored in the structure of this volume, with articles on the theoretical background, the empirical analysis and the potential applications of tagging, for instance in university libraries, e-learning, or e-commerce. As an introduction to the topic of "social tagging" I would like to draw your attention to some foundation concepts of the phenomenon I have racked my brain with for the last few month. One thing I have seen missing in recent research and system development is a focus on the variety of user perspectives in social tagging. Different people perceive tagging in complex variegated ways and use this form of knowledge organization for a variety of purposes. My analytical interest lies in understanding the personas and patterns in tagging systems and in being able to label their different perceptions. To come up with a concise picture of user expectations, needs and activities, I have broken down the perspectives on tagging into two different categories, namely "faces" and "depth". When put together, they form the "Matrix of Perception" - a nuanced view of stakeholders and their respective levels of participation.
    Date
    22. 6.2009 9:15:45
  20. Fox, M.J.: Communities of practice, gender and social tagging (2012) 0.01
    0.01163124 = product of:
      0.052340582 = sum of:
        0.038237654 = weight(_text_:use in 873) [ClassicSimilarity], result of:
          0.038237654 = score(doc=873,freq=6.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.35158852 = fieldWeight in 873, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.046875 = fieldNorm(doc=873)
        0.01410293 = weight(_text_:of in 873) [ClassicSimilarity], result of:
          0.01410293 = score(doc=873,freq=12.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.25392252 = fieldWeight in 873, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=873)
      0.22222222 = coord(2/9)
    
    Abstract
    Social or collaborative tagging enables users to organize and label resources on the web. Libraries and other information environments hope that tagging can complement professional subject access with user-created terms. But who are the taggers, and does their language represent that of the user population? Some language theorists believe that inherent variables, such as gender or race, can be responsible for language use, whereas other researchers endorse more multiply-influenced practice-based approaches, where interactions with others affect language use more than a single variable. To explore whether linguistic variation in tagging is influenced more by gender or context, in this exploratory study, I will analyze the content and quantity of tags used on LibraryThing. This study seeks to dismantle stereotypical views of women's language use and to suggest a community of practice-based approach to analyzing social tags.
    Source
    Categories, contexts and relations in knowledge organization: Proceedings of the Twelfth International ISKO Conference 6-9 August 2012, Mysore, India. Eds.: Neelameghan, A. u. K.S. Raghavan

Languages

  • e 102
  • d 9
  • i 1
  • More… Less…

Types

  • a 99
  • el 13
  • m 5
  • b 2
  • s 2
  • More… Less…