Search (21 results, page 1 of 2)

  • × theme_ss:"Suchmaschinen"
  • × type_ss:"a"
  • × type_ss:"el"
  1. Zhao, Y.; Ma, F.; Xia, X.: Evaluating the coverage of entities in knowledge graphs behind general web search engines : Poster (2017) 0.02
    0.021993173 = product of:
      0.043986347 = sum of:
        0.008582841 = weight(_text_:information in 3854) [ClassicSimilarity], result of:
          0.008582841 = score(doc=3854,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 3854, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3854)
        0.035403505 = product of:
          0.07080701 = sum of:
            0.07080701 = weight(_text_:organization in 3854) [ClassicSimilarity], result of:
              0.07080701 = score(doc=3854,freq=8.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.39391994 = fieldWeight in 3854, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3854)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Web search engines, such as Google and Bing, are constantly employing results from knowledge organization and various visualization features to improve their search services. Knowledge graph, a large repository of structured knowledge represented by formal languages such as RDF (Resource Description Framework), is used to support entity search feature of Google and Bing (Demartini, 2016). When a user searchs for an entity, such as a person, an organization, or a place in Google or Bing, it is likely that a knowledge cardwill be presented on the right side bar of the search engine result pages (SERPs). For example, when a user searches the entity Benedict Cumberbatch on Google, the knowledge card will show the basic structured information about this person, including his date of birth, height, spouse, parents, and his movies, etc. The knowledge card, which is used to present the result of entity search, is generated from knowledge graphs. Therefore, the quality of knowledge graphs is essential to the performance of entity search. However, studies on the quality of knowledge graphs from the angle of entity coverage are scant in the literature. This study aims to investigate the coverage of entities of knowledge graphs behind Google and Bing.
    Content
    Beitrag bei: NASKO 2017: Visualizing Knowledge Organization: Bringing Focus to Abstract Realities. The sixth North American Symposium on Knowledge Organization (NASKO 2017), June 15-16, 2017, in Champaign, IL, USA.
  2. Söhler, M.: "Dumm wie Google" war gestern : semantische Suche im Netz (2011) 0.01
    0.013692091 = product of:
      0.054768365 = sum of:
        0.054768365 = weight(_text_:standards in 4440) [ClassicSimilarity], result of:
          0.054768365 = score(doc=4440,freq=4.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.2437397 = fieldWeight in 4440, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4440)
      0.25 = coord(1/4)
    
    Content
    - Neue Standards Doch was hier entstehen könnte, hat das Zeug dazu, Teile des Netzes und speziell die Funktionen von Suchmaschinen mittel- oder langfristig zu verändern. "Große Player sind dabei, sich auf Standards zu einigen", sagt Daniel Bahls, Spezialist für Semantische Technologien beim ZBW Leibniz-Informationszentrum Wirtschaft in Hamburg. "Die semantischen Technologien stehen schon seit Jahren im Raum und wurden bisher nur im kleineren Kontext verwendet." Denn Schema.org lädt Entwickler, Forscher, die Semantic-Web-Community und am Ende auch alle Betreiber von Websites dazu ein, an der Umgestaltung der Suche im Netz mitzuwirken. "Damit wollen Google, Bing und Yahoo! dem Info-Chaos im WWW den Garaus machen", schreibt André Vatter im Blog ZBW Mediatalk. Inhalte von Websites sollen mit einem speziellen, aber einheitlichen Vokabular für die Crawler der Suchmaschinen gekennzeichnet und aufbereitet werden. Indem Schlagworte, so genannte Tags, in den Code von Websites eingebettet werden, sind Suchmachinen nicht mehr so sehr auf die Analyse der natürlichen Sprache angewiesen, um Texte inhaltlich zu erfassen. Im Blog wird dies als "Semantic Web light" bezeichnet - ein semantisches Web auf niedrigster Ebene. Aber selbst das werde "schon viel bewirken", meint Bahls. "Das semantische Web wird sich über die nächsten Jahrzehnte evolutionär weiterentwickeln." Einen "Abschluss" werde es nie geben, "da eine einheitliche Formalisierung von Begrifflichkeiten auf feiner Stufe kaum möglich ist."
  3. Baeza-Yates, R.; Boldi, P.; Castillo, C.: Generalizing PageRank : damping functions for linkbased ranking algorithms (2006) 0.01
    0.0128297005 = product of:
      0.025659401 = sum of:
        0.008582841 = weight(_text_:information in 2565) [ClassicSimilarity], result of:
          0.008582841 = score(doc=2565,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 2565, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2565)
        0.01707656 = product of:
          0.03415312 = sum of:
            0.03415312 = weight(_text_:22 in 2565) [ClassicSimilarity], result of:
              0.03415312 = score(doc=2565,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.19345059 = fieldWeight in 2565, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2565)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    16. 1.2016 10:22:28
    Source
    http://chato.cl/papers/baeza06_general_pagerank_damping_functions_link_ranking.pdf [Proceedings of the ACM Special Interest Group on Information Retrieval (SIGIR) Conference, SIGIR'06, August 6-10, 2006, Seattle, Washington, USA]
  4. Dunning, A.: Do we still need search engines? (1999) 0.01
    0.011953591 = product of:
      0.047814365 = sum of:
        0.047814365 = product of:
          0.09562873 = sum of:
            0.09562873 = weight(_text_:22 in 6021) [ClassicSimilarity], result of:
              0.09562873 = score(doc=6021,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.5416616 = fieldWeight in 6021, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=6021)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Ariadne. 1999, no.22
  5. Söhler, M.: Schluss mit Schema F (2011) 0.01
    0.0110648805 = product of:
      0.044259522 = sum of:
        0.044259522 = weight(_text_:standards in 4439) [ClassicSimilarity], result of:
          0.044259522 = score(doc=4439,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.19697142 = fieldWeight in 4439, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.03125 = fieldNorm(doc=4439)
      0.25 = coord(1/4)
    
    Content
    "Wörter haben oft mehrere Bedeutungen. Einige kennen den "Kanal" als künstliche Wasserstraße, andere vom Fernsehen. Die Waage kann zum Erfassen des Gewichts nützlich sein oder zur Orientierung auf der Horoskopseite. Casablanca ist eine Stadt und ein Film zugleich. Wo Menschen mit der Zeit Bedeutungen unterscheiden und verarbeiten lernen, können dies Suchmaschinen von selbst nicht. Stets listen sie dumpf hintereinander weg alles auf, was sie zu einem Thema finden. Damit das nicht so bleibt, haben sich nun Google, Yahoo und die zu Microsoft gehörende Suchmaschine Bing zusammengetan, um der Suche im Netz mehr Verständnis zu verpassen. Man spricht dabei auch von einer "semantischen Suche". Das Ergebnis heißt Schema.org. Wer die Webseite einmal besucht, sich ein wenig in die Unterstrukturen hereinklickt und weder Vorkenntnisse im Programmieren noch im Bereich des semantischen Webs hat, wird sich überfordert und gelangweilt wieder abwenden. Doch was hier entstehen könnte, hat das Zeug dazu, Teile des Netzes und speziell die Funktionen von Suchmaschinen mittel- oder langfristig zu verändern. "Große Player sind dabei, sich auf Standards zu einigen", sagt Daniel Bahls, Spezialist für Semantische Technologien beim ZBW Leibniz-Informationszentrum Wirtschaft in Hamburg. "Die semantischen Technologien stehen schon seit Jahren im Raum und wurden bisher nur im kleineren Kontext verwendet." Denn Schema.org lädt Entwickler, Forscher, die Semantic-Web-Community und am Ende auch alle Betreiber von Websites dazu ein, an der Umgestaltung der Suche im Netz mitzuwirken. Inhalte von Websites sollen mit einem speziellen, aber einheitlichen Vokabular für die Crawler - die Analyseprogramme der Suchmaschinen - gekennzeichnet und aufbereitet werden.
  6. Bensman, S.J.: Eugene Garfield, Francis Narin, and PageRank : the theoretical bases of the Google search engine (2013) 0.01
    0.0068306234 = product of:
      0.027322493 = sum of:
        0.027322493 = product of:
          0.054644987 = sum of:
            0.054644987 = weight(_text_:22 in 1149) [ClassicSimilarity], result of:
              0.054644987 = score(doc=1149,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.30952093 = fieldWeight in 1149, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1149)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    17.12.2013 11:02:22
  7. Schaat, S.: Von der automatisierten Manipulation zur Manipulation der Automatisierung (2019) 0.01
    0.0068306234 = product of:
      0.027322493 = sum of:
        0.027322493 = product of:
          0.054644987 = sum of:
            0.054644987 = weight(_text_:22 in 4996) [ClassicSimilarity], result of:
              0.054644987 = score(doc=4996,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.30952093 = fieldWeight in 4996, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4996)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    19. 2.2019 17:22:00
  8. Griesbaum, J.; Rittberger, M.; Bekavac, B.: Deutsche Suchmaschinen im Vergleich : AltaVista.de, Fireball.de, Google.de und Lycos.de (2002) 0.01
    0.006068985 = product of:
      0.02427594 = sum of:
        0.02427594 = weight(_text_:information in 1159) [ClassicSimilarity], result of:
          0.02427594 = score(doc=1159,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.27429342 = fieldWeight in 1159, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=1159)
      0.25 = coord(1/4)
    
    Source
    Information und Mobilität: Optimierung und Vermeidung von Mobilität durch Information. Proceedings des 8. Internationalen Symposiums für Informationswissenschaft (ISI 2002), 7.-10.10.2002, Regensburg. Hrsg.: Rainer Hammwöhner, Christian Wolff, Christa Womser-Hacker
  9. Lossau, N.: Search engine technology and digital libraries : libraries need to discover the academic internet (2004) 0.01
    0.006007989 = product of:
      0.024031956 = sum of:
        0.024031956 = weight(_text_:information in 1161) [ClassicSimilarity], result of:
          0.024031956 = score(doc=1161,freq=8.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.27153665 = fieldWeight in 1161, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1161)
      0.25 = coord(1/4)
    
    Abstract
    With the development of the World Wide Web, the "information search" has grown to be a significant business sector of a global, competitive and commercial market. Powerful players have entered this market, such as commercial internet search engines, information portals, multinational publishers and online content integrators. Will Google, Yahoo or Microsoft be the only portals to global knowledge in 2010? If libraries do not want to become marginalized in a key area of their traditional services, they need to acknowledge the challenges that come with the globalisation of scholarly information, the existence and further growth of the academic internet
    Theme
    Information Gateway
  10. Kriewel, S.; Klas, C.P.; Schaefer, A.; Fuhr, N.: DAFFODIL : strategic support for user-oriented access to heterogeneous digital libraries (2004) 0.01
    0.0052030715 = product of:
      0.020812286 = sum of:
        0.020812286 = weight(_text_:information in 4838) [ClassicSimilarity], result of:
          0.020812286 = score(doc=4838,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.23515764 = fieldWeight in 4838, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4838)
      0.25 = coord(1/4)
    
    Abstract
    DAFFODIL is a search system for digital libraries aiming at strategic support during the information search process. From a user point of view this strategic support is mainly implemented by high-level search functions, so-called stratagems, which provide functionality beyond today's digital libraries. Through the tight integration of stratagems and with the federation of heterogeneous digital libraries, DAFFODIL reaches high effects of synergy for information and services. These effects provide high-quality metadata for the searcher through an intuitively controllable user interface. The implementation of stratagems follows a tool-based model.
    Theme
    Information Gateway
  11. Warnick, W.L.; Leberman, A.; Scott, R.L.; Spence, K.J.; Johnsom, L.A.; Allen, V.S.: Searching the deep Web : directed query engine applications at the Department of Energy (2001) 0.01
    0.005149705 = product of:
      0.02059882 = sum of:
        0.02059882 = weight(_text_:information in 1215) [ClassicSimilarity], result of:
          0.02059882 = score(doc=1215,freq=8.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.23274569 = fieldWeight in 1215, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1215)
      0.25 = coord(1/4)
    
    Abstract
    Directed Query Engines, an emerging class of search engine specifically designed to access distributed resources on the deep web, offer the opportunity to create inexpensive digital libraries. Already, one such engine, Distributed Explorer, has been used to select and assemble high quality information resources and incorporate them into publicly available systems for the physical sciences. By nesting Directed Query Engines so that one query launches several other engines in a cascading fashion, enormous virtual collections may soon be assembled to form a comprehensive information infrastructure for the physical sciences. Once a Directed Query Engine has been configured for a set of information resources, distributed alerts tools can provide patrons with personalized, profile-based notices of recent additions to any of the selected resources. Due to the potentially enormous size and scope of Directed Query Engine applications, consideration must be given to issues surrounding the representation of large quantities of information from multiple, heterogeneous sources.
  12. Bauckhage, C.: Marginalizing over the PageRank damping factor (2014) 0.00
    0.0042914203 = product of:
      0.017165681 = sum of:
        0.017165681 = weight(_text_:information in 928) [ClassicSimilarity], result of:
          0.017165681 = score(doc=928,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.19395474 = fieldWeight in 928, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=928)
      0.25 = coord(1/4)
    
    Abstract
    In this note, we show how to marginalize over the damping parameter of the PageRank equation so as to obtain a parameter-free version known as TotalRank. Our discussion is meant as a reference and intended to provide a guided tour towards an interesting result that has applications in information retrieval and classification.
  13. Boldi, P.; Santini, M.; Vigna, S.: PageRank as a function of the damping factor (2005) 0.00
    0.00426914 = product of:
      0.01707656 = sum of:
        0.01707656 = product of:
          0.03415312 = sum of:
            0.03415312 = weight(_text_:22 in 2564) [ClassicSimilarity], result of:
              0.03415312 = score(doc=2564,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.19345059 = fieldWeight in 2564, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2564)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    16. 1.2016 10:22:28
  14. Smith, A.G.: Search features of digital libraries (2000) 0.00
    0.0036413912 = product of:
      0.014565565 = sum of:
        0.014565565 = weight(_text_:information in 940) [ClassicSimilarity], result of:
          0.014565565 = score(doc=940,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.16457605 = fieldWeight in 940, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=940)
      0.25 = coord(1/4)
    
    Content
    Enthält eine Zusammenstellung der Werkzeuge und Hilfsmittel des Information Retrieval
    Source
    Information Research. 5(2000) no.3, April 2000
  15. Ding, L.; Finin, T.; Joshi, A.; Peng, Y.; Cost, R.S.; Sachs, J.; Pan, R.; Reddivari, P.; Doshi, V.: Swoogle : a Semantic Web search and metadata engine (2004) 0.00
    0.0036413912 = product of:
      0.014565565 = sum of:
        0.014565565 = weight(_text_:information in 4704) [ClassicSimilarity], result of:
          0.014565565 = score(doc=4704,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.16457605 = fieldWeight in 4704, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4704)
      0.25 = coord(1/4)
    
    Abstract
    Swoogle is a crawler-based indexing and retrieval system for the Semantic Web, i.e., for Web documents in RDF or OWL. It extracts metadata for each discovered document, and computes relations between documents. Discovered documents are also indexed by an information retrieval system which can use either character N-Gram or URIrefs as keywords to find relevant documents and to compute the similarity among a set of documents. One of the interesting properties we compute is rank, a measure of the importance of a Semantic Web document.
    Source
    CIKM '04 Proceedings of the thirteenth ACM international conference on Information and knowledge management
  16. Hodson, H.: Google's fact-checking bots build vast knowledge bank (2014) 0.00
    0.0034331365 = product of:
      0.013732546 = sum of:
        0.013732546 = weight(_text_:information in 1700) [ClassicSimilarity], result of:
          0.013732546 = score(doc=1700,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.1551638 = fieldWeight in 1700, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=1700)
      0.25 = coord(1/4)
    
    Abstract
    The search giant is automatically building Knowledge Vault, a massive database that could give us unprecedented access to the world's facts GOOGLE is building the largest store of knowledge in human history - and it's doing so without any human help. Instead, Knowledge Vault autonomously gathers and merges information from across the web into a single base of facts about the world, and the people and objects in it.
  17. Brin, S.; Page, L.: ¬The anatomy of a large-scale hypertextual Web search engine (1998) 0.00
    0.0030344925 = product of:
      0.01213797 = sum of:
        0.01213797 = weight(_text_:information in 947) [ClassicSimilarity], result of:
          0.01213797 = score(doc=947,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.13714671 = fieldWeight in 947, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=947)
      0.25 = coord(1/4)
    
    Abstract
    In this paper, we present Google, a prototype of a large-scale search engine which makes heavy use of the structure present in hypertext. Google is designed to crawl and index the Web efficiently and produce much more satisfying search results than existing systems. The prototype with a full text and hyperlink database of at least 24 million pages is available at http://google.stanford.edu/. To engineer a search engine is a challenging task. Search engines index tens to hundreds of millions of web pages involving a comparable number of distinct terms. They answer tens of millions of queries every day. Despite the importance of large-scale search engines on the web, very little academic research has been done on them. Furthermore, due to rapid advance in technology and web proliferation, creating a web search engine today is very different from three years ago. This paper provides an in-depth description of our large-scale web search engine -- the first such detailed public description we know of to date. Apart from the problems of scaling traditional search techniques to data of this magnitude, there are new technical challenges involved with using the additional information present in hypertext to produce better search results. This paper addresses this question of how to build a practical large-scale system which can exploit the additional information present in hypertext. Also we look at the problem of how to effectively deal with uncontrolled hypertext collections where anyone can publish anything they want
  18. Tetzchner, J. von: As a monopoly in search and advertising Google is not able to resist the misuse of power : is the Internet turning into a battlefield of propaganda? How Google should be regulated (2017) 0.00
    0.0026015358 = product of:
      0.010406143 = sum of:
        0.010406143 = weight(_text_:information in 3891) [ClassicSimilarity], result of:
          0.010406143 = score(doc=3891,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.11757882 = fieldWeight in 3891, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=3891)
      0.25 = coord(1/4)
    
    Content
    How should Google be regulated? We should limit the amount of information that is being collected. In particular we should look at information that is being collected across sites. It should not be legal to combine data from multiple sites and services. The fact that these sites and services are using the same underlying technology does not change the fact that the user's dealings is with a site at a time and each site should not have the right to share the data with others. I believe this the cornerstone of laws in many countries today, but these laws need to be enforced. Data about us is ours alone and it should not be possible to sell it. We should also limit the ability to target users individually. In the past, ads on sites were ads on sites. You might know what kind of users visited a site and you would place tech ads on tech sites and fashion ads on fashion sites. Now the ads follow you individually. That should be made illegal as it uses data collected from multiple sources and invades our privacy. I also believe there should be regulation as to how location data is used and any information related to our mobile devices. In addition, regulators need to be vigilant as to how companies that have monopoly power use their power. That kind of goes without saying. Companies with monopoly powers should not be able to use those powers when competing in an open market or using their monopoly services to limit competition."
  19. Summann, F.; Lossau, N.: Search engine technology and digital libraries : moving from theory to practice (2004) 0.00
    0.002427594 = product of:
      0.009710376 = sum of:
        0.009710376 = weight(_text_:information in 1196) [ClassicSimilarity], result of:
          0.009710376 = score(doc=1196,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.10971737 = fieldWeight in 1196, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=1196)
      0.25 = coord(1/4)
    
    Abstract
    This article describes the journey from the conception of and vision for a modern search-engine-based search environment to its technological realisation. In doing so, it takes up the thread of an earlier article on this subject, this time from a technical viewpoint. As well as presenting the conceptual considerations of the initial stages, this article will principally elucidate the technological aspects of this journey. The starting point for the deliberations about development of an academic search engine was the experience we gained through the generally successful project "Digital Library NRW", in which from 1998 to 2000-with Bielefeld University Library in overall charge-we designed a system model for an Internet-based library portal with an improved academic search environment at its core. At the heart of this system was a metasearch with an availability function, to which we added a user interface integrating all relevant source material for study and research. The deficiencies of this approach were felt soon after the system was launched in June 2001. There were problems with the stability and performance of the database retrieval system, with the integration of full-text documents and Internet pages, and with acceptance by users, because users are increasingly performing the searches themselves using search engines rather than going to the library for help in doing searches. Since a long list of problems are also encountered using commercial search engines for academic use (in particular the retrieval of academic information and long-term availability), the idea was born for a search engine configured specifically for academic use. We also hoped that with one single access point founded on improved search engine technology, we could access the heterogeneous academic resources of subject-based bibliographic databases, catalogues, electronic newspapers, document servers and academic web pages.
    Theme
    Information Gateway
  20. Günther, M.: Vermitteln Suchmaschinen vollständige Bilder aktueller Themen? : Untersuchung der Gewichtung inhaltlicher Aspekte von Suchmaschinenergebnissen in Deutschland und den USA (2016) 0.00
    0.0021457102 = product of:
      0.008582841 = sum of:
        0.008582841 = weight(_text_:information in 3068) [ClassicSimilarity], result of:
          0.008582841 = score(doc=3068,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 3068, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3068)
      0.25 = coord(1/4)
    
    Source
    Young information scientists. 1(2016), S.13-29