Search (7 results, page 1 of 1)

  • × theme_ss:"Suchmaschinen"
  • × type_ss:"m"
  • × year_i:[2010 TO 2020}
  1. Gossen, T.: Search engines for children : search user interfaces and information-seeking behaviour (2016) 0.02
    0.017436286 = product of:
      0.043590713 = sum of:
        0.0041290424 = weight(_text_:a in 2752) [ClassicSimilarity], result of:
          0.0041290424 = score(doc=2752,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.07722905 = fieldWeight in 2752, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2752)
        0.039461672 = sum of:
          0.017473722 = weight(_text_:information in 2752) [ClassicSimilarity], result of:
            0.017473722 = score(doc=2752,freq=20.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.21466857 = fieldWeight in 2752, product of:
                4.472136 = tf(freq=20.0), with freq of:
                  20.0 = termFreq=20.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.02734375 = fieldNorm(doc=2752)
          0.021987949 = weight(_text_:22 in 2752) [ClassicSimilarity], result of:
            0.021987949 = score(doc=2752,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.1354154 = fieldWeight in 2752, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.02734375 = fieldNorm(doc=2752)
      0.4 = coord(2/5)
    
    Abstract
    The doctoral thesis of Tatiana Gossen formulates criteria and guidelines on how to design the user interfaces of search engines for children. In her work, the author identifies the conceptual challenges based on own and previous user studies and addresses the changing characteristics of the users by providing a means of adaptation. Additionally, a novel type of search result visualisation for children with cartoon style characters is developed taking children's preference for visual information into account.
    Content
    Inhalt: Acknowledgments; Abstract; Zusammenfassung; Contents; List of Figures; List of Tables; List of Acronyms; Chapter 1 Introduction ; 1.1 Research Questions; 1.2 Thesis Outline; Part I Fundamentals ; Chapter 2 Information Retrieval for Young Users ; 2.1 Basics of Information Retrieval; 2.1.1 Architecture of an IR System; 2.1.2 Relevance Ranking; 2.1.3 Search User Interfaces; 2.1.4 Targeted Search Engines; 2.2 Aspects of Child Development Relevant for Information Retrieval Tasks; 2.2.1 Human Cognitive Development; 2.2.2 Information Processing Theory; 2.2.3 Psychosocial Development 2.3 User Studies and Evaluation2.3.1 Methods in User Studies; 2.3.2 Types of Evaluation; 2.3.3 Evaluation with Children; 2.4 Discussion; Chapter 3 State of the Art ; 3.1 Children's Information-Seeking Behaviour; 3.1.1 Querying Behaviour; 3.1.2 Search Strategy; 3.1.3 Navigation Style; 3.1.4 User Interface; 3.1.5 Relevance Judgement; 3.2 Existing Algorithms and User Interface Concepts for Children; 3.2.1 Query; 3.2.2 Content; 3.2.3 Ranking; 3.2.4 Search Result Visualisation; 3.3 Existing Information Retrieval Systems for Children; 3.3.1 Digital Book Libraries; 3.3.2 Web Search Engines 3.4 Summary and DiscussionPart II Studying Open Issues ; Chapter 4 Usability of Existing Search Engines for Young Users ; 4.1 Assessment Criteria; 4.1.1 Criteria for Matching the Motor Skills; 4.1.2 Criteria for Matching the Cognitive Skills; 4.2 Results; 4.2.1 Conformance with Motor Skills; 4.2.2 Conformance with the Cognitive Skills; 4.2.3 Presentation of Search Results; 4.2.4 Browsing versus Searching; 4.2.5 Navigational Style; 4.3 Summary and Discussion; Chapter 5 Large-scale Analysis of Children's Queries and Search Interactions; 5.1 Dataset; 5.2 Results; 5.3 Summary and Discussion Chapter 6 Differences in Usability and Perception of Targeted Web Search Engines between Children and Adults 6.1 Related Work; 6.2 User Study; 6.3 Study Results; 6.4 Summary and Discussion; Part III Tackling the Challenges ; Chapter 7 Search User Interface Design for Children ; 7.1 Conceptual Challenges and Possible Solutions; 7.2 Knowledge Journey Design; 7.3 Evaluation; 7.3.1 Study Design; 7.3.2 Study Results; 7.4 Voice-Controlled Search: Initial Study; 7.4.1 User Study; 7.5 Summary and Discussion; Chapter 8 Addressing User Diversity ; 8.1 Evolving Search User Interface 8.1.1 Mapping Function8.1.2 Evolving Skills; 8.1.3 Detection of User Abilities; 8.1.4 Design Concepts; 8.2 Adaptation of a Search User Interface towards User Needs; 8.2.1 Design & Implementation; 8.2.2 Search Input; 8.2.3 Result Output; 8.2.4 General Properties; 8.2.5 Configuration and Further Details; 8.3 Evaluation; 8.3.1 Study Design; 8.3.2 Study Results; 8.3.3 Preferred UI Settings; 8.3.4 User satisfaction; 8.4 Knowledge Journey Exhibit; 8.4.1 Hardware; 8.4.2 Frontend; 8.4.3 Backend; 8.5 Summary and Discussion; Chapter 9 Supporting Visual Searchers in Processing Search Results 9.1 Related Work
    Date
    1. 2.2016 18:25:22
    LCSH
    Information storage and retrieval
    Subject
    Information storage and retrieval
  2. Croft, W.B.; Metzler, D.; Strohman, T.: Search engines : information retrieval in practice (2010) 0.01
    0.008595185 = product of:
      0.021487962 = sum of:
        0.005779455 = weight(_text_:a in 2605) [ClassicSimilarity], result of:
          0.005779455 = score(doc=2605,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.10809815 = fieldWeight in 2605, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2605)
        0.015708508 = product of:
          0.031417016 = sum of:
            0.031417016 = weight(_text_:information in 2605) [ClassicSimilarity], result of:
              0.031417016 = score(doc=2605,freq=22.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.38596505 = fieldWeight in 2605, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2605)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    For introductory information retrieval courses at the undergraduate and graduate level in computer science, information science and computer engineering departments. Written by a leader in the field of information retrieval, Search Engines: Information Retrieval in Practice, is designed to give undergraduate students the understanding and tools they need to evaluate, compare and modify search engines. Coverage of the underlying IR and mathematical models reinforce key concepts. The book's numerous programming exercises make extensive use of Galago, a Java-based open source search engine. SUPPLEMENTS / Extensive lecture slides (in PDF and PPT format) / Solutions to selected end of chapter problems (Instructors only) / Test collections for exercises / Galago search engine
    LCSH
    Information retrieval
    Information Storage and Retrieval
    RSWK
    Suchmaschine / Information Retrieval
    Subject
    Suchmaschine / Information Retrieval
    Information retrieval
    Information Storage and Retrieval
  3. Next generation search engines : advanced models for information retrieval (2012) 0.01
    0.0072925375 = product of:
      0.018231343 = sum of:
        0.0074222814 = weight(_text_:a in 357) [ClassicSimilarity], result of:
          0.0074222814 = score(doc=357,freq=38.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.13882536 = fieldWeight in 357, product of:
              6.164414 = tf(freq=38.0), with freq of:
                38.0 = termFreq=38.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.01953125 = fieldNorm(doc=357)
        0.010809061 = product of:
          0.021618122 = sum of:
            0.021618122 = weight(_text_:information in 357) [ClassicSimilarity], result of:
              0.021618122 = score(doc=357,freq=60.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.26558346 = fieldWeight in 357, product of:
                  7.745967 = tf(freq=60.0), with freq of:
                    60.0 = termFreq=60.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=357)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The main goal of this book is to transfer new research results from the fields of advanced computer sciences and information science to the design of new search engines. The readers will have a better idea of the new trends in applied research. The achievement of relevant, organized, sorted, and workable answers- to name but a few - from a search is becoming a daily need for enterprises and organizations, and, to a greater extent, for anyone. It does not consist of getting access to structural information as in standard databases; nor does it consist of searching information strictly by way of a combination of key words. It goes far beyond that. Whatever its modality, the information sought should be identified by the topics it contains, that is to say by its textual, audio, video or graphical contents. This is not a new issue. However, recent technological advances have completely changed the techniques being used. New Web technologies, the emergence of Intranet systems and the abundance of information on the Internet have created the need for efficient search and information access tools.
    Recent technological progress in computer science, Web technologies, and constantly evolving information available on the Internet has drastically changed the landscape of search and access to information. Web search has significantly evolved in recent years. In the beginning, web search engines such as Google and Yahoo! were only providing search service over text documents. Aggregated search was one of the first steps to go beyond text search, and was the beginning of a new era for information seeking and retrieval. These days, new web search engines support aggregated search over a number of vertices, and blend different types of documents (e.g., images, videos) in their search results. New search engines employ advanced techniques involving machine learning, computational linguistics and psychology, user interaction and modeling, information visualization, Web engineering, artificial intelligence, distributed systems, social networks, statistical analysis, semantic analysis, and technologies over query sessions. Documents no longer exist on their own; they are connected to other documents, they are associated with users and their position in a social network, and they can be mapped onto a variety of ontologies. Similarly, retrieval tasks have become more interactive and are solidly embedded in a user's geospatial, social, and historical context. It is conjectured that new breakthroughs in information retrieval will not come from smarter algorithms that better exploit existing information sources, but from new retrieval algorithms that can intelligently use and combine new sources of contextual metadata.
    With the rapid growth of web-based applications, such as search engines, Facebook, and Twitter, the development of effective and personalized information retrieval techniques and of user interfaces is essential. The amount of shared information and of social networks has also considerably grown, requiring metadata for new sources of information, like Wikipedia and ODP. These metadata have to provide classification information for a wide range of topics, as well as for social networking sites like Twitter, and Facebook, each of which provides additional preferences, tagging information and social contexts. Due to the explosion of social networks and other metadata sources, it is an opportune time to identify ways to exploit such metadata in IR tasks such as user modeling, query understanding, and personalization, to name a few. Although the use of traditional metadata such as html text, web page titles, and anchor text is fairly well-understood, the use of category information, user behavior data, and geographical information is just beginning to be studied. This book is intended for scientists and decision-makers who wish to gain working knowledge about search engines in order to evaluate available solutions and to dialogue with software and data providers.
    Content
    Enthält die Beiträge: Das, A., A. Jain: Indexing the World Wide Web: the journey so far. Ke, W.: Decentralized search and the clustering paradox in large scale information networks. Roux, M.: Metadata for search engines: what can be learned from e-Sciences? Fluhr, C.: Crosslingual access to photo databases. Djioua, B., J.-P. Desclés u. M. Alrahabi: Searching and mining with semantic categories. Ghorbel, H., A. Bahri u. R. Bouaziz: Fuzzy ontologies building platform for Semantic Web: FOB platform. Lassalle, E., E. Lassalle: Semantic models in information retrieval. Berry, M.W., R. Esau u. B. Kiefer: The use of text mining techniques in electronic discovery for legal matters. Sleem-Amer, M., I. Bigorgne u. S. Brizard u.a.: Intelligent semantic search engines for opinion and sentiment mining. Hoeber, O.: Human-centred Web search.
    Vert, S.: Extensions of Web browsers useful to knowledge workers. Chen, L.-C.: Next generation search engine for the result clustering technology. Biskri, I., L. Rompré: Using association rules for query reformulation. Habernal, I., M. Konopík u. O. Rohlík: Question answering. Grau, B.: Finding answers to questions, in text collections or Web, in open domain or specialty domains. Berri, J., R. Benlamri: Context-aware mobile search engine. Bouidghaghen, O., L. Tamine: Spatio-temporal based personalization for mobile search. Chaudiron, S., M. Ihadjadene: Studying Web search engines from a user perspective: key concepts and main approaches. Karaman, F.: Artificial intelligence enabled search engines (AIESE) and the implications. Lewandowski, D.: A framework for evaluating the retrieval effectiveness of search engines.
    LCSH
    Information retrieval
    Information retrieval / Research
    Information storage and retrieval systems / Research
    Information behavior
    Subject
    Information retrieval
    Information retrieval / Research
    Information storage and retrieval systems / Research
    Information behavior
  4. White, R.W.: Interactions with search systems (2016) 0.01
    0.0062546856 = product of:
      0.015636714 = sum of:
        0.0068111527 = weight(_text_:a in 3612) [ClassicSimilarity], result of:
          0.0068111527 = score(doc=3612,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.12739488 = fieldWeight in 3612, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3612)
        0.008825562 = product of:
          0.017651124 = sum of:
            0.017651124 = weight(_text_:information in 3612) [ClassicSimilarity], result of:
              0.017651124 = score(doc=3612,freq=10.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.21684799 = fieldWeight in 3612, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3612)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Information seeking is a fundamental human activity. In the modern world, it is frequently conducted through interactions with search systems. The retrieval and comprehension of information returned by these systems is a key part of decision making and action in a broad range of settings. Advances in data availability coupled with new interaction paradigms, and mobile and cloud computing capabilities, have created a broad range of new opportunities for information access and use. In this comprehensive book for professionals, researchers, and students involved in search system design and evaluation, search expert Ryen White discusses how search systems can capitalize on new capabilities and how next-generation systems must support higher order search activities such as task completion, learning, and decision making. He outlines the implications of these changes for the evolution of search evaluation, as well as challenges that extend beyond search systems in areas such as privacy and societal benefit.
    RSWK
    Information Retrieval
    Subject
    Information Retrieval
  5. Web search engine research (2012) 0.01
    0.006112744 = product of:
      0.01528186 = sum of:
        0.007078358 = weight(_text_:a in 478) [ClassicSimilarity], result of:
          0.007078358 = score(doc=478,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.13239266 = fieldWeight in 478, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=478)
        0.008203502 = product of:
          0.016407004 = sum of:
            0.016407004 = weight(_text_:information in 478) [ClassicSimilarity], result of:
              0.016407004 = score(doc=478,freq=6.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.20156369 = fieldWeight in 478, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=478)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    "Web Search Engine Research", edited by Dirk Lewandowski, provides an understanding of Web search engines from the unique perspective of Library and Information Science. The book explores a range of topics including retrieval effectiveness, user satisfaction, the evaluation of search interfaces, the impact of search on society, reliability of search results, query log analysis, user guidance in the search process, and the influence of search engine optimization (SEO) on results quality. While research in computer science has mainly focused on technical aspects of search engines, LIS research is centred on users' behaviour when using search engines and how this interaction can be evaluated. LIS research provides a unique perspective in intermediating between the technical aspects, user aspects and their impact on their role in knowledge acquisition. This book is directly relevant to researchers and practitioners in library and information science, computer science, including Web researchers.
    Footnote
    Weitere Rez. in: Journal of Documentation, 69(2013) no.4, S.594-596 (A. MacFarlane)
    Series
    Library and information science; vol. 4
  6. Levy, S.: In the plex : how Google thinks, works, and shapes our lives (2011) 0.00
    9.5356145E-4 = product of:
      0.004767807 = sum of:
        0.004767807 = weight(_text_:a in 9) [ClassicSimilarity], result of:
          0.004767807 = score(doc=9,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.089176424 = fieldWeight in 9, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.02734375 = fieldNorm(doc=9)
      0.2 = coord(1/5)
    
    Abstract
    Few companies in history have ever been as successful and as admired as Google, the company that has transformed the Internet and become an indispensable part of our lives. How has Google done it? Veteran technology reporter Steven Levy was granted unprecedented access to the company, and in this revelatory book he takes readers inside Google headquarters-the Googleplex-to show how Google works. While they were still students at Stanford, Google cofounders Larry Page and Sergey Brin revolutionized Internet search. They followed this brilliant innovation with another, as two of Google's earliest employees found a way to do what no one else had: make billions of dollars from Internet advertising. With this cash cow (until Google's IPO nobody other than Google management had any idea how lucrative the company's ad business was), Google was able to expand dramatically and take on other transformative projects: more efficient data centers, open-source cell phones, free Internet video (YouTube), cloud computing, digitizing books, and much more. The key to Google's success in all these businesses, Levy reveals, is its engineering mind-set and adoption of such Internet values as speed, openness, experimentation, and risk taking. After its unapologetically elitist approach to hiring, Google pampers its engineers-free food and dry cleaning, on-site doctors and masseuses-and gives them all the resources they need to succeed. Even today, with a workforce of more than 23,000, Larry Page signs off on every hire. But has Google lost its innovative edge? It stumbled badly in China-Levy discloses what went wrong and how Brin disagreed with his peers on the China strategy-and now with its newest initiative, social networking, Google is chasing a successful competitor for the first time. Some employees are leaving the company for smaller, nimbler start-ups. Can the company that famously decided not to be evil still compete? No other book has ever turned Google inside out as Levy does with In the Plex.
    Content
    The world according to Google: biography of a search engine -- Googlenomics: cracking the code on internet profits -- Don't be evil: how Google built its culture -- Google's cloud: how Google built data centers and killed the hard drive -- Outside the box: the Google phone company. and the Google t.v. company -- Guge: Google moral dilemma in China -- Google.gov: is what's good for Google, good for government or the public? -- Epilogue: chasing tail lights: trying to crack the social code.
  7. ¬Die Googleisierung der Informationssuche : Suchmaschinen zwischen Nutzung und Regulierung (2014) 0.00
    8.9308404E-4 = product of:
      0.0044654203 = sum of:
        0.0044654203 = product of:
          0.0089308405 = sum of:
            0.0089308405 = weight(_text_:information in 1840) [ClassicSimilarity], result of:
              0.0089308405 = score(doc=1840,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.10971737 = fieldWeight in 1840, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1840)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    RSWK
    Google / Internet / Information Retrieval / Aufsatzsammlung
    Subject
    Google / Internet / Information Retrieval / Aufsatzsammlung

Languages