Search (96 results, page 4 of 5)

  • × theme_ss:"Theorie verbaler Dokumentationssprachen"
  • × type_ss:"a"
  1. Svenonius, E.: LCSH: semantics, syntax and specifity (2000) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 5602) [ClassicSimilarity], result of:
              0.008118451 = score(doc=5602,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 5602, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5602)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper looks at changes affecting LCSH over its 100-year history. Adopting a linguistic conceptualization, it frames these changes as relating to the semantics, syntax and pragmatics of the LCSH language. While its category semantics has remained stable over time, the LCSH relational semantics underwent a significant upheaval when a thesaural structure was imposed upon its traditional See and See also structure. Over time the LCSH syntax has become increasingly complex as it has moved from being largely enumerative to in large part synthetic. Until fairly recently the LCSH pragmatics consisted of only one rule, viz, the injunction to assign specific headings. This rule, always controversial, has become even more debated and interpreted with the move to the online environment
    Type
    a
  2. Khoo, C.; Chan, S.; Niu, Y.: ¬The many facets of the cause-effect relation (2002) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 1192) [ClassicSimilarity], result of:
              0.008118451 = score(doc=1192,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 1192, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1192)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This chapter presents a broad survey of the cause-effect relation, with particular emphasis an how the relation is expressed in text. Philosophers have been grappling with the concept of causation for centuries. Researchers in social psychology have found that the human mind has a very complex mechanism for identifying and attributing the cause for an event. Inferring cause-effect relations between events and statements has also been found to be an important part of reading and text comprehension, especially for narrative text. Though many of the cause-effect relations in text are implied and have to be inferred by the reader, there is also a wide variety of linguistic expressions for explicitly indicating cause and effect. In addition, it has been found that certain words have "causal valence"-they bias the reader to attribute cause in certain ways. Cause-effect relations can also be divided into several different types.
    Type
    a
  3. Wu, Y.; Yang, L.: Construction and evaluation of an oil spill semantic relation taxonomy for supporting knowledge discovery (2015) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 2202) [ClassicSimilarity], result of:
              0.008118451 = score(doc=2202,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 2202, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2202)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The paper presents the rationale, significance, method and procedure of building a taxonomy of semantic relations in the oil spill domain for supporting knowledge discovery through inference. Difficult problems during the development of the taxonomy are discussed and partial solutions are proposed. A preliminary functional evaluation of the taxonomy for supporting knowledge discovery was performed. Durability an expansibility of the taxonomy were evaluated by using the taxonomy to classifying the terms in a biomedical relation ontology. The taxonomy was found to have full expansibility and high degree of durability. The study proposes more research problems than solutions.
    Type
    a
  4. Mazzocchi, F.: Relations in KOS : is it possible to couple a common nature with different roles? (2017) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 78) [ClassicSimilarity], result of:
              0.008118451 = score(doc=78,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 78, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=78)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The purpose of this paper, which increases and deepens what was expressed in a previous work (Mazzocchi et al., 2007), is to scrutinize the underlying assumptions of the types of relations included in thesauri, particularly the genus-species relation. Logicist approaches to information organization, which are still dominant, will be compared with hermeneutically oriented approaches. In the light of these approaches, the nature and features of the relations, and what the notion of a priori could possibly mean with regard to them, are examined, together with the implications for designing and implementing knowledge organizations systems (KOS). Design/methodology/approach The inquiry is based on how the relations are described in literature, engaging in particular a discussion with Hjørland (2015) and Svenonius (2004). The philosophical roots of today's leading views are briefly illustrated, in order to put them under perspective and deconstruct the uncritical reception of their authority. To corroborate the discussion a semantic analysis of specific terms and relations is provided too. Findings All relations should be seen as "perspectival" (not as a priori). On the other hand, different types of relations, depending on the conceptual features of the terms involved, can hold a different degree of "stability." On this basis, they could be used to address different information concerns (e.g. interoperability vs expressiveness). Research limitations/implications Some arguments that the paper puts forth at the conceptual level need to be tested in application contexts. Originality/value This paper considers that the standpoint of logic and of hermeneutic (usually seen as conflicting) are both significant for information organization, and could be pragmatically integrated. In accordance with this view, an extension of thesaurus relations' set is advised, meaning that perspective hierarchical relations (i.e. relations that are not logically based but function contingently) should be also included in such a set.
    Type
    a
  5. Svenonius, E.: Unanswered questions in the design of controlled vocabularies (1986) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 584) [ClassicSimilarity], result of:
              0.007654148 = score(doc=584,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 584, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=584)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The issue of free-text versus controlled vocabulary is examined in this article. The history of the issue, which is seen as beginning with the debate over title term indexing in the last century, is reviewed and the attention is turned to questions which have not been satisfactorily addressed by previous research. The point is made that these questions need to be answered if we are to design retrieval tools, such as thesauri, upon a national basis
    Type
    a
  6. Green, R.; Bean, C.A.: Aligning systems of relationships (2006) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 4949) [ClassicSimilarity], result of:
              0.007654148 = score(doc=4949,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 4949, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4949)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Knowledge organization, information systems and other essays: Professor A. Neelameghan Festschrift. Ed. by K.S. Raghavan and K.N. Prasad
    Type
    a
  7. Bodenreider, O.; Bean, C.A.: Relationships among knowledge structures : vocabulary integration within a subject domain (2001) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 1145) [ClassicSimilarity], result of:
              0.007654148 = score(doc=1145,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 1145, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1145)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  8. Green, R.; Fraser, L.: Patterns in verbal polysemy (2004) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 2621) [ClassicSimilarity], result of:
              0.007654148 = score(doc=2621,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 2621, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2621)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Although less well studied than noun polysemy, verb polysemy affects both natural language and controlled vocabulary searching. This paper reports the preliminary conclusions of an empirical investigation of the semantic relationships between ca. 600 verb sense pairs in English, illustrating six classes of semantic relationships that account for a significant proportion of verbal polysemy.
    Type
    a
  9. Weller, K.; Peters, I.: Reconsidering relationships for knowledge representation (2007) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 216) [ClassicSimilarity], result of:
              0.007654148 = score(doc=216,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 216, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=216)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Classical knowledge representation methods traditionally work with established relations such as synonymy, hierarchy and unspecified associations. Recent developments like ontologies and folksonomies show new forms of collaboration, indexing and knowledge representation and encourage the reconsideration of standard knowledge relationships. In a summarizing overview we show which relations are currently utilized in elaborated knowledge representation methods and which may be inherently hidden in folksonomies and ontologies.
    Type
    a
  10. Busch, A.: Terminologiemanagement : erfolgreicher Wissenstransfer durch Concept-Maps und die Überlegungen in DGI-AKTS (2021) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 422) [ClassicSimilarity], result of:
              0.007654148 = score(doc=422,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 422, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=422)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  11. Hoerman, H.L.; Furniss, K.A.: Turning practice into principles : a comparison of the IFLA Principles underlying Subject Heading Languages (SHLs) and the principles underlying the Library of Congress Subject Headings system (2000) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 5611) [ClassicSimilarity], result of:
              0.007030784 = score(doc=5611,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 5611, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5611)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The IFLA Section on Classification and Indexing's Working Group on Principles Underlying Subject Headings Languages has identified a set of eleven principles for subject heading languages and excerpted the texts that match each principle from the instructions for each of eleven national subject indexing systems, including excerpts from the LC's Subject Cataloging Manual: Subject Headings. This study compares the IFLA principles with other texts that express the principles underlying LCSH, especially Library of Congress Subject Headings: Principles of Structure and Policies for Application, prepared by Lois Mai Chan for the Library of Congress in 1990, Chan's later book on LCSH, and earlier documents by Haykin and Cutter. The principles are further elaborated for clarity and discussed
    Type
    a
  12. Neelameghan, A.: Lateral relationships in multicultural, multilingual databases in the spiritual and religious domains : the OM Information service (2001) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 1146) [ClassicSimilarity], result of:
              0.007030784 = score(doc=1146,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 1146, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1146)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Mapping a multidimensional universe of subjects for linear representation, such as in class number, subject heading, and faset structure is problematic. Into this context is recalled the near-seminal and postulational approach suggested by S. R Ranganathan. The non-hierarchical associative relationship or lateral relationship (LR) is distinguished at different levels-among information sources, databases, records of databases, and among concepts (LR-0). Over thirty lateral relationships at the concept level (LR-0) are identified and enumerated with examples from spiritual and religious texts. Special issues relating to LR-0 in multicultural, multilingual databases intended to be used globally by peoples of different cultures and faith are discussed, using as example the multimedia OM Information Service. Vocabulary assistance for users is described.
    Type
    a
  13. Evens, M.: Thesaural relations in information retrieval (2002) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 1201) [ClassicSimilarity], result of:
              0.007030784 = score(doc=1201,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 1201, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1201)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Thesaural relations have long been used in information retrieval to enrich queries; they have sometimes been used to cluster documents as well. Sometimes the first query to an information retrieval system yields no results at all, or, what can be even more disconcerting, many thousands of hits. One solution is to rephrase the query, improving the choice of query terms by using related terms of different types. A collection of related terms is often called a thesaurus. This chapter describes the lexical-semantic relations that have been used in building thesauri and summarizes some of the effects of using these relational thesauri in information retrieval experiments
    Type
    a
  14. Tartaglia, S.: Authority control and subject indexing languages (2004) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 5683) [ClassicSimilarity], result of:
              0.007030784 = score(doc=5683,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 5683, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5683)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The existence of subject indexing languages does not call for or imply a particular authority control system exclusively dedicated to subject entries. To be really effective and efficient, authority control must be concerned with all the categories of entities, and must regard not just the form but also the meaning and the semantic relations of the expressions used to identify the single entities. Thus, it satisfies the lexical needs of all cataloguing languages, including subject indexing languages. It is not correct nor opportune to extend authority control to the syntactic constructions of subject indexing languages, because this reduces the rigor and efficiency of the control process, weighing it down until it becomes unfeasible, and impeding its function as a unifying element between the different cataloguing languages.
    Type
    a
  15. Schmitz-Esser, W.: Formalizing terminology-based knowledge for an ontology independently of a particular language (2008) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 1680) [ClassicSimilarity], result of:
              0.007030784 = score(doc=1680,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 1680, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1680)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Last word ontological thought and practice is exemplified on an axiomatic framework [a model for an Integrative Cross-Language Ontology (ICLO), cf. Poli, R., Schmitz-Esser, W., forthcoming 2007] that is highly general, based on natural language, multilingual, can be implemented as topic maps and may be openly enhanced by software available for particular languages. Basics of ontological modelling, conditions for construction and maintenance, and the most salient points in application are addressed, such as cross-language text mining and knowledge generation. The rationale is to open the eyes for the tremendous potential of terminology-based ontologies for principled Knowledge Organization and the interchange and reuse of formalized knowledge.
    Type
    a
  16. Khoo, S.G.; Na, J.-C.: Semantic relations in information science (2006) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 1978) [ClassicSimilarity], result of:
              0.007030784 = score(doc=1978,freq=24.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 1978, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1978)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This chapter examines the nature of semantic relations and their main applications in information science. The nature and types of semantic relations are discussed from the perspectives of linguistics and psychology. An overview of the semantic relations used in knowledge structures such as thesauri and ontologies is provided, as well as the main techniques used in the automatic extraction of semantic relations from text. The chapter then reviews the use of semantic relations in information extraction, information retrieval, question-answering, and automatic text summarization applications. Concepts and relations are the foundation of knowledge and thought. When we look at the world, we perceive not a mass of colors but objects to which we automatically assign category labels. Our perceptual system automatically segments the world into concepts and categories. Concepts are the building blocks of knowledge; relations act as the cement that links concepts into knowledge structures. We spend much of our lives identifying regular associations and relations between objects, events, and processes so that the world has an understandable structure and predictability. Our lives and work depend on the accuracy and richness of this knowledge structure and its web of relations. Relations are needed for reasoning and inferencing. Chaffin and Herrmann (1988b, p. 290) noted that "relations between ideas have long been viewed as basic to thought, language, comprehension, and memory." Aristotle's Metaphysics (Aristotle, 1961; McKeon, expounded on several types of relations. The majority of the 30 entries in a section of the Metaphysics known today as the Philosophical Lexicon referred to relations and attributes, including cause, part-whole, same and opposite, quality (i.e., attribute) and kind-of, and defined different types of each relation. Hume (1955) pointed out that there is a connection between successive ideas in our minds, even in our dreams, and that the introduction of an idea in our mind automatically recalls an associated idea. He argued that all the objects of human reasoning are divided into relations of ideas and matters of fact and that factual reasoning is founded on the cause-effect relation. His Treatise of Human Nature identified seven kinds of relations: resemblance, identity, relations of time and place, proportion in quantity or number, degrees in quality, contrariety, and causation. Mill (1974, pp. 989-1004) discoursed on several types of relations, claiming that all things are either feelings, substances, or attributes, and that attributes can be a quality (which belongs to one object) or a relation to other objects.
    Linguists in the structuralist tradition (e.g., Lyons, 1977; Saussure, 1959) have asserted that concepts cannot be defined on their own but only in relation to other concepts. Semantic relations appear to reflect a logical structure in the fundamental nature of thought (Caplan & Herrmann, 1993). Green, Bean, and Myaeng (2002) noted that semantic relations play a critical role in how we represent knowledge psychologically, linguistically, and computationally, and that many systems of knowledge representation start with a basic distinction between entities and relations. Green (2001, p. 3) said that "relationships are involved as we combine simple entities to form more complex entities, as we compare entities, as we group entities, as one entity performs a process on another entity, and so forth. Indeed, many things that we might initially regard as basic and elemental are revealed upon further examination to involve internal structure, or in other words, internal relationships." Concepts and relations are often expressed in language and text. Language is used not just for communicating concepts and relations, but also for representing, storing, and reasoning with concepts and relations. We shall examine the nature of semantic relations from a linguistic and psychological perspective, with an emphasis on relations expressed in text. The usefulness of semantic relations in information science, especially in ontology construction, information extraction, information retrieval, question-answering, and text summarization is discussed. Research and development in information science have focused on concepts and terms, but the focus will increasingly shift to the identification, processing, and management of relations to achieve greater effectiveness and refinement in information science techniques. Previous chapters in ARIST on natural language processing (Chowdhury, 2003), text mining (Trybula, 1999), information retrieval and the philosophy of language (Blair, 2003), and query expansion (Efthimiadis, 1996) provide a background for this discussion, as semantic relations are an important part of these applications.
    Type
    a
  17. Fugmann, R.: Theoretische Grundlagen der Indexierungspraxis (1985) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 280) [ClassicSimilarity], result of:
              0.006765375 = score(doc=280,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 280, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=280)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  18. Winograd, T.: Software für Sprachverarbeitung (1984) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 1687) [ClassicSimilarity], result of:
              0.006765375 = score(doc=1687,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 1687, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1687)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  19. Fugmann, R.: ¬The complementarity of natural and controlled languages in indexing (1995) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 1634) [ClassicSimilarity], result of:
              0.006765375 = score(doc=1634,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 1634, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1634)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  20. Casagrande, J.B.; Hale, K.L.: Semantic relations in Papago folk definitions (1967) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 1194) [ClassicSimilarity], result of:
              0.006765375 = score(doc=1194,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 1194, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1194)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a

Languages

  • e 74
  • d 19
  • f 2
  • ja 1
  • More… Less…