Search (96 results, page 5 of 5)

  • × theme_ss:"Theorie verbaler Dokumentationssprachen"
  • × type_ss:"a"
  1. Broughton, V.: Language related problems in the construction of faceted terminologies and their automatic management (2008) 0.00
    0.0012548991 = product of:
      0.0069019445 = sum of:
        0.0051659266 = weight(_text_:a in 2497) [ClassicSimilarity], result of:
          0.0051659266 = score(doc=2497,freq=14.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.1685276 = fieldWeight in 2497, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2497)
        0.0017360178 = weight(_text_:s in 2497) [ClassicSimilarity], result of:
          0.0017360178 = score(doc=2497,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.060061958 = fieldWeight in 2497, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2497)
      0.18181819 = coord(2/11)
    
    Content
    The paper describes current work on the generation of a thesaurus format from the schedules of the Bliss Bibliographic Classification 2nd edition (BC2). The practical problems that occur in moving from a concept based approach to a terminological approach cluster around issues of vocabulary control that are not fully addressed in a systematic structure. These difficulties can be exacerbated within domains in the humanities because large numbers of culture specific terms may need to be accommodated in any thesaurus. The ways in which these problems can be resolved within the context of a semi-automated approach to the thesaurus generation have consequences for the management of classification data in the source vocabulary. The way in which the vocabulary is marked up for the purpose of machine manipulation is described, and some of the implications for editorial policy are discussed and examples given. The value of the classification notation as a language independent representation and mapping tool should not be sacrificed in such an exercise.
    Pages
    S.43-49
    Type
    a
  2. Svenonius, E.: LCSH: semantics, syntax and specifity (2000) 0.00
    0.0012307836 = product of:
      0.0067693098 = sum of:
        0.0046860883 = weight(_text_:a in 5599) [ClassicSimilarity], result of:
          0.0046860883 = score(doc=5599,freq=8.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.15287387 = fieldWeight in 5599, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=5599)
        0.0020832212 = weight(_text_:s in 5599) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=5599,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 5599, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=5599)
      0.18181819 = coord(2/11)
    
    Abstract
    This paper looks at changes affecting LCSH over its 100-year history. Adopting a linguistic conceptualization, it frames these changes as relating to the semantics, syntax and pragmatics of the LCSH language. While its category semantics has remained stable over time, the LCSH relational semantics underwent a significant upheaval when a thesaural structure was imposed upon its traditional See and See also structure. Over time the LCSH syntax has become increasingly complex as it has moved from being largely enumerative to in large part synthetic. Until fairly recently the LCSH pragmatics consisted of only one rule, viz, the injunction to assign specific headings. This rule, always controversial, has become even more debated and interpreted with the move to the online environment
    Pages
    S.1-15
    Type
    a
  3. Svenonius, E.: LCSH: semantics, syntax and specifity (2000) 0.00
    0.0012307836 = product of:
      0.0067693098 = sum of:
        0.0046860883 = weight(_text_:a in 5602) [ClassicSimilarity], result of:
          0.0046860883 = score(doc=5602,freq=8.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.15287387 = fieldWeight in 5602, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=5602)
        0.0020832212 = weight(_text_:s in 5602) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=5602,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 5602, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=5602)
      0.18181819 = coord(2/11)
    
    Abstract
    This paper looks at changes affecting LCSH over its 100-year history. Adopting a linguistic conceptualization, it frames these changes as relating to the semantics, syntax and pragmatics of the LCSH language. While its category semantics has remained stable over time, the LCSH relational semantics underwent a significant upheaval when a thesaural structure was imposed upon its traditional See and See also structure. Over time the LCSH syntax has become increasingly complex as it has moved from being largely enumerative to in large part synthetic. Until fairly recently the LCSH pragmatics consisted of only one rule, viz, the injunction to assign specific headings. This rule, always controversial, has become even more debated and interpreted with the move to the online environment
    Pages
    S.17-30
    Type
    a
  4. Wu, Y.; Yang, L.: Construction and evaluation of an oil spill semantic relation taxonomy for supporting knowledge discovery (2015) 0.00
    0.0012307836 = product of:
      0.0067693098 = sum of:
        0.0046860883 = weight(_text_:a in 2202) [ClassicSimilarity], result of:
          0.0046860883 = score(doc=2202,freq=8.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.15287387 = fieldWeight in 2202, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2202)
        0.0020832212 = weight(_text_:s in 2202) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=2202,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 2202, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=2202)
      0.18181819 = coord(2/11)
    
    Abstract
    The paper presents the rationale, significance, method and procedure of building a taxonomy of semantic relations in the oil spill domain for supporting knowledge discovery through inference. Difficult problems during the development of the taxonomy are discussed and partial solutions are proposed. A preliminary functional evaluation of the taxonomy for supporting knowledge discovery was performed. Durability an expansibility of the taxonomy were evaluated by using the taxonomy to classifying the terms in a biomedical relation ontology. The taxonomy was found to have full expansibility and high degree of durability. The study proposes more research problems than solutions.
    Source
    Knowledge organization. 42(2015) no.4, S.222-231
    Type
    a
  5. Mazzocchi, F.; Tiberi, M.; De Santis, B.; Plini, P.: Relational semantics in thesauri : an overview and some remarks at theoretical and practical levels (2007) 0.00
    0.001185225 = product of:
      0.006518737 = sum of:
        0.004782719 = weight(_text_:a in 1462) [ClassicSimilarity], result of:
          0.004782719 = score(doc=1462,freq=12.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.15602624 = fieldWeight in 1462, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1462)
        0.0017360178 = weight(_text_:s in 1462) [ClassicSimilarity], result of:
          0.0017360178 = score(doc=1462,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.060061958 = fieldWeight in 1462, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1462)
      0.18181819 = coord(2/11)
    
    Abstract
    A thesaurus is a controlled vocabulary designed to allow for effective information retrieval. It con- sists of different kinds of semantic relationships, with the aim of guiding users to the choice of the most suitable index and search terms for expressing a certain concept. The relational semantics of a thesaurus deal with methods to connect terms with related meanings and arc intended to enhance information recall capabilities. In this paper, focused on hierarchical relations, different aspects of the relational semantics of thesauri, and among them the possibility of developing richer structures, are analyzed. Thesauri are viewed as semantic tools providing, for operational purposes, the representation of the meaning of the terms. The paper stresses how theories of semantics, holding different perspectives about the nature of meaning and how it is represented, affect the design of the relational semantics of thesauri. The need for tools capable of representing the complexity of knowledge and of the semantics of terms as it occurs in the literature of their respective subject fields is advocated. It is underlined how this would contribute to improving the retrieval of information. To achieve this goal, even though in a preliminary manner, we explore the possibility of setting against the framework of thesaurus design the notions of language games and hermeneutic horizon.
    Source
    Knowledge organization. 34(2007) no.4, S.196-213
    Type
    a
  6. Dextre Clarke, S.G.; Gilchrist, A.; Will, L.: Revision and extension of thesaurus standards (2004) 0.00
    0.0011506155 = product of:
      0.0063283853 = sum of:
        0.004939571 = weight(_text_:a in 2615) [ClassicSimilarity], result of:
          0.004939571 = score(doc=2615,freq=20.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.16114321 = fieldWeight in 2615, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=2615)
        0.0013888142 = weight(_text_:s in 2615) [ClassicSimilarity], result of:
          0.0013888142 = score(doc=2615,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.048049565 = fieldWeight in 2615, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.03125 = fieldNorm(doc=2615)
      0.18181819 = coord(2/11)
    
    Abstract
    The current standards for monolingual and multilingual thesauri are long overdue for an update. This applies to the international standards ISO 2788 and ISO 5964, as well as the corresponding national standards in several countries and the American standard ANSI/NISO Z39.19. Work is now under way in the UK and in the USA to revise and extend the standards, with particular emphasis on interoperability needs in our world of vast electronic networks. Work in the UK is starting with the British Standards, in the hope of leading on to one international standard to serve all. Some of the issues still under discussion include the treatment of facet analysis, coverage of additional types of controlled vocabulary such as classification schemes, taxonomies and ontologies, and mapping from one vocabulary to another. 1. Are thesaurus standards still needed? Since the 1960s, even before the renowned Cranfield experiments (Cleverdon et al., 1966; Cleverdon, 1967) arguments have raged over the usefulness or otherwise of controlled vocabularies. The case has never been proved definitively one way or the other. At the same time, a recognition has become widespread that no one search method can answer all retrieval requirements. In today's environment of very large networks of resources, the skilled information professional uses a range of techniques. Among these, controlled vocabularies are valued alongside others. The first international standard for monolingual thesauri was issued in 1974. In those days, the main application was for postcoordinate indexing and retrieval from document collections or bibliographic databases. For many information professionals the only practicable alternative to a thesaurus was a classification scheme. And so the thesaurus developed a strong following. After computer systems with full text search capability became widely available, however, the arguments against controlled vocabularies gained more followers. The cost of building and maintaining a thesaurus or a classification scheme was a strong disincentive. Today's databases are typically immense compared with those three decades ago. Full text searching is taken for granted, not just in discrete databases but across all the resources in an intranet or even the Internet. But intranets have brought particular frustration as users discover that despite all the computer power, they cannot find items which they know to be present an the network. So the trend against controlled vocabularies is now being reversed, as many information professionals are turning to them for help. Standards to guide them are still in demand.
    Pages
    S.215-220
    Type
    a
  7. Lopes, M.I.: Principles underlying subject heading languages : an international approach (1996) 0.00
    0.001144773 = product of:
      0.006296251 = sum of:
        0.003865826 = weight(_text_:a in 5608) [ClassicSimilarity], result of:
          0.003865826 = score(doc=5608,freq=4.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.12611452 = fieldWeight in 5608, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5608)
        0.0024304248 = weight(_text_:s in 5608) [ClassicSimilarity], result of:
          0.0024304248 = score(doc=5608,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.08408674 = fieldWeight in 5608, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5608)
      0.18181819 = coord(2/11)
    
    Abstract
    Discusses the problems in establishing commonly accepted principles for subject retrieval between different bibliographic systems. The Working Group on Principles Underlying Subject Heading Languages was established to devise general principles for any subject retrieval system and to review existing real systems in the light of such principles and compare them in order to evaluate the extent of their coverage and their application in current practices. Provides a background and history of the Working Group. Discusses the principles underlying subject headings and their purposes and the state of the work and major findings
    Source
    International cataloguing and bibliographic control. 25(1995) no.1, S.10-12
    Type
    a
  8. Hoerman, H.L.; Furniss, K.A.: Turning practice into principles : a comparison of the IFLA Principles underlying Subject Heading Languages (SHLs) and the principles underlying the Library of Congress Subject Headings system (2000) 0.00
    0.0011166352 = product of:
      0.006141493 = sum of:
        0.0040582716 = weight(_text_:a in 5611) [ClassicSimilarity], result of:
          0.0040582716 = score(doc=5611,freq=6.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.13239266 = fieldWeight in 5611, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=5611)
        0.0020832212 = weight(_text_:s in 5611) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=5611,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 5611, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=5611)
      0.18181819 = coord(2/11)
    
    Abstract
    The IFLA Section on Classification and Indexing's Working Group on Principles Underlying Subject Headings Languages has identified a set of eleven principles for subject heading languages and excerpted the texts that match each principle from the instructions for each of eleven national subject indexing systems, including excerpts from the LC's Subject Cataloging Manual: Subject Headings. This study compares the IFLA principles with other texts that express the principles underlying LCSH, especially Library of Congress Subject Headings: Principles of Structure and Policies for Application, prepared by Lois Mai Chan for the Library of Congress in 1990, Chan's later book on LCSH, and earlier documents by Haykin and Cutter. The principles are further elaborated for clarity and discussed
    Pages
    S.31-52
    Type
    a
  9. Tartaglia, S.: Authority control and subject indexing languages (2004) 0.00
    0.0011166352 = product of:
      0.006141493 = sum of:
        0.0040582716 = weight(_text_:a in 5683) [ClassicSimilarity], result of:
          0.0040582716 = score(doc=5683,freq=6.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.13239266 = fieldWeight in 5683, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=5683)
        0.0020832212 = weight(_text_:s in 5683) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=5683,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 5683, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=5683)
      0.18181819 = coord(2/11)
    
    Abstract
    The existence of subject indexing languages does not call for or imply a particular authority control system exclusively dedicated to subject entries. To be really effective and efficient, authority control must be concerned with all the categories of entities, and must regard not just the form but also the meaning and the semantic relations of the expressions used to identify the single entities. Thus, it satisfies the lexical needs of all cataloguing languages, including subject indexing languages. It is not correct nor opportune to extend authority control to the syntactic constructions of subject indexing languages, because this reduces the rigor and efficiency of the control process, weighing it down until it becomes unfeasible, and impeding its function as a unifying element between the different cataloguing languages.
    Type
    a
  10. Mazzocchi, F.: Relations in KOS : is it possible to couple a common nature with different roles? (2017) 0.00
    0.0011045277 = product of:
      0.0060749026 = sum of:
        0.0046860883 = weight(_text_:a in 78) [ClassicSimilarity], result of:
          0.0046860883 = score(doc=78,freq=18.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.15287387 = fieldWeight in 78, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=78)
        0.0013888142 = weight(_text_:s in 78) [ClassicSimilarity], result of:
          0.0013888142 = score(doc=78,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.048049565 = fieldWeight in 78, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.03125 = fieldNorm(doc=78)
      0.18181819 = coord(2/11)
    
    Abstract
    The purpose of this paper, which increases and deepens what was expressed in a previous work (Mazzocchi et al., 2007), is to scrutinize the underlying assumptions of the types of relations included in thesauri, particularly the genus-species relation. Logicist approaches to information organization, which are still dominant, will be compared with hermeneutically oriented approaches. In the light of these approaches, the nature and features of the relations, and what the notion of a priori could possibly mean with regard to them, are examined, together with the implications for designing and implementing knowledge organizations systems (KOS). Design/methodology/approach The inquiry is based on how the relations are described in literature, engaging in particular a discussion with Hjørland (2015) and Svenonius (2004). The philosophical roots of today's leading views are briefly illustrated, in order to put them under perspective and deconstruct the uncritical reception of their authority. To corroborate the discussion a semantic analysis of specific terms and relations is provided too. Findings All relations should be seen as "perspectival" (not as a priori). On the other hand, different types of relations, depending on the conceptual features of the terms involved, can hold a different degree of "stability." On this basis, they could be used to address different information concerns (e.g. interoperability vs expressiveness). Research limitations/implications Some arguments that the paper puts forth at the conceptual level need to be tested in application contexts. Originality/value This paper considers that the standpoint of logic and of hermeneutic (usually seen as conflicting) are both significant for information organization, and could be pragmatically integrated. In accordance with this view, an extension of thesaurus relations' set is advised, meaning that perspective hierarchical relations (i.e. relations that are not logically based but function contingently) should be also included in such a set.
    Source
    Journal of Documentation. 73(2017) no.2, S.368-383
    Type
    a
  11. Takeda, N.: Problems in hierarchical structures in thesauri : their influences on the results of information retrieval (1994) 0.00
    0.001073034 = product of:
      0.005901687 = sum of:
        0.0031240587 = weight(_text_:a in 2642) [ClassicSimilarity], result of:
          0.0031240587 = score(doc=2642,freq=2.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.10191591 = fieldWeight in 2642, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=2642)
        0.0027776284 = weight(_text_:s in 2642) [ClassicSimilarity], result of:
          0.0027776284 = score(doc=2642,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.09609913 = fieldWeight in 2642, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0625 = fieldNorm(doc=2642)
      0.18181819 = coord(2/11)
    
    Source
    Online Kensaku. 15(1994) no.4, S.183-186
    Type
    a
  12. Engerer, V.: Control and syntagmatization : vocabulary requirements in information retrieval thesauri and natural language lexicons (2017) 0.00
    9.812339E-4 = product of:
      0.005396786 = sum of:
        0.0033135647 = weight(_text_:a in 3678) [ClassicSimilarity], result of:
          0.0033135647 = score(doc=3678,freq=4.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.10809815 = fieldWeight in 3678, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3678)
        0.0020832212 = weight(_text_:s in 3678) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=3678,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 3678, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=3678)
      0.18181819 = coord(2/11)
    
    Abstract
    This paper explores the relationships between natural language lexicons in lexical semantics and thesauri in information retrieval research. These different areas of knowledge have different restrictions on use of vocabulary; thesauri are used only in information search and retrieval contexts, whereas lexicons are mental systems and generally applicable in all domains of life. A set of vocabulary requirements that defines the more concrete characteristics of vocabulary items in the 2 contexts can be derived from this framework: lexicon items have to be learnable, complex, transparent, etc., whereas thesaurus terms must be effective, current and relevant, searchable, etc. The differences in vocabulary properties correlate with 2 other factors, the well-known dimension of Control (deliberate, social activities of building and maintaining vocabularies), and Syntagmatization, which is less known and describes vocabulary items' varying formal preparedness to exit the thesaurus/lexicon, enter into linear syntactic constructions, and, finally, acquire communicative functionality. It is proposed that there is an inverse relationship between Control and Syntagmatization.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.6, S.1480-1490
    Type
    a
  13. Mai, J.-E.: Actors, domains, and constraints in the design and construction of controlled vocabularies (2008) 0.00
    9.3052926E-4 = product of:
      0.005117911 = sum of:
        0.0033818933 = weight(_text_:a in 1921) [ClassicSimilarity], result of:
          0.0033818933 = score(doc=1921,freq=6.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.11032722 = fieldWeight in 1921, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1921)
        0.0017360178 = weight(_text_:s in 1921) [ClassicSimilarity], result of:
          0.0017360178 = score(doc=1921,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.060061958 = fieldWeight in 1921, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1921)
      0.18181819 = coord(2/11)
    
    Abstract
    Classification schemes, thesauri, taxonomies, and other controlled vocabularies play important roles in the organization and retrieval of information in many different environments. While the design and construction of controlled vocabularies have been prescribed at the technical level in great detail over the past decades, the methodological level has been somewhat neglected. However, classification research has in recent years focused on developing approaches to the analysis of users, domains, and activities that could produce requirements for the design of controlled vocabularies. Researchers have often argued that the design, construction, and use of controlled vocabularies need to be based on analyses and understandings of the contexts in which these controlled vocabularies function. While one would assume that the growing body of research on human information behavior might help guide the development of controlled vocabularies shed light on these contexts, unfortunately, much of the research in this area is descriptive in nature and of little use for systems design. This paper discusses these trends and outlines a holistic approach that demonstrates how the design of controlled vocabularies can be informed by investigations of people's interactions with information. This approach is based on the Cognitive Work Analysis framework and outlines several dimensions of human-information interactions. Application of this approach will result is a comprehensive understanding of the contexts in which the controlled vocabulary will function and which can be used for the development of for the development of controlled vocabularies.
    Source
    Knowledge organization. 35(2008) no.1, S.16-29
    Type
    a
  14. Khoo, S.G.; Na, J.-C.: Semantic relations in information science (2006) 0.00
    9.2725136E-4 = product of:
      0.0050998824 = sum of:
        0.0040582716 = weight(_text_:a in 1978) [ClassicSimilarity], result of:
          0.0040582716 = score(doc=1978,freq=24.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.13239266 = fieldWeight in 1978, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1978)
        0.0010416106 = weight(_text_:s in 1978) [ClassicSimilarity], result of:
          0.0010416106 = score(doc=1978,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.036037173 = fieldWeight in 1978, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1978)
      0.18181819 = coord(2/11)
    
    Abstract
    This chapter examines the nature of semantic relations and their main applications in information science. The nature and types of semantic relations are discussed from the perspectives of linguistics and psychology. An overview of the semantic relations used in knowledge structures such as thesauri and ontologies is provided, as well as the main techniques used in the automatic extraction of semantic relations from text. The chapter then reviews the use of semantic relations in information extraction, information retrieval, question-answering, and automatic text summarization applications. Concepts and relations are the foundation of knowledge and thought. When we look at the world, we perceive not a mass of colors but objects to which we automatically assign category labels. Our perceptual system automatically segments the world into concepts and categories. Concepts are the building blocks of knowledge; relations act as the cement that links concepts into knowledge structures. We spend much of our lives identifying regular associations and relations between objects, events, and processes so that the world has an understandable structure and predictability. Our lives and work depend on the accuracy and richness of this knowledge structure and its web of relations. Relations are needed for reasoning and inferencing. Chaffin and Herrmann (1988b, p. 290) noted that "relations between ideas have long been viewed as basic to thought, language, comprehension, and memory." Aristotle's Metaphysics (Aristotle, 1961; McKeon, expounded on several types of relations. The majority of the 30 entries in a section of the Metaphysics known today as the Philosophical Lexicon referred to relations and attributes, including cause, part-whole, same and opposite, quality (i.e., attribute) and kind-of, and defined different types of each relation. Hume (1955) pointed out that there is a connection between successive ideas in our minds, even in our dreams, and that the introduction of an idea in our mind automatically recalls an associated idea. He argued that all the objects of human reasoning are divided into relations of ideas and matters of fact and that factual reasoning is founded on the cause-effect relation. His Treatise of Human Nature identified seven kinds of relations: resemblance, identity, relations of time and place, proportion in quantity or number, degrees in quality, contrariety, and causation. Mill (1974, pp. 989-1004) discoursed on several types of relations, claiming that all things are either feelings, substances, or attributes, and that attributes can be a quality (which belongs to one object) or a relation to other objects.
    Linguists in the structuralist tradition (e.g., Lyons, 1977; Saussure, 1959) have asserted that concepts cannot be defined on their own but only in relation to other concepts. Semantic relations appear to reflect a logical structure in the fundamental nature of thought (Caplan & Herrmann, 1993). Green, Bean, and Myaeng (2002) noted that semantic relations play a critical role in how we represent knowledge psychologically, linguistically, and computationally, and that many systems of knowledge representation start with a basic distinction between entities and relations. Green (2001, p. 3) said that "relationships are involved as we combine simple entities to form more complex entities, as we compare entities, as we group entities, as one entity performs a process on another entity, and so forth. Indeed, many things that we might initially regard as basic and elemental are revealed upon further examination to involve internal structure, or in other words, internal relationships." Concepts and relations are often expressed in language and text. Language is used not just for communicating concepts and relations, but also for representing, storing, and reasoning with concepts and relations. We shall examine the nature of semantic relations from a linguistic and psychological perspective, with an emphasis on relations expressed in text. The usefulness of semantic relations in information science, especially in ontology construction, information extraction, information retrieval, question-answering, and text summarization is discussed. Research and development in information science have focused on concepts and terms, but the focus will increasingly shift to the identification, processing, and management of relations to achieve greater effectiveness and refinement in information science techniques. Previous chapters in ARIST on natural language processing (Chowdhury, 2003), text mining (Trybula, 1999), information retrieval and the philosophy of language (Blair, 2003), and query expansion (Efthimiadis, 1996) provide a background for this discussion, as semantic relations are an important part of these applications.
    Source
    Annual review of information science and technology. 40(2006), S.157-228
    Type
    a
  15. Zhou, G.D.; Zhang, M.: Extracting relation information from text documents by exploring various types of knowledge (2007) 0.00
    8.176949E-4 = product of:
      0.004497322 = sum of:
        0.0027613041 = weight(_text_:a in 927) [ClassicSimilarity], result of:
          0.0027613041 = score(doc=927,freq=4.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.090081796 = fieldWeight in 927, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=927)
        0.0017360178 = weight(_text_:s in 927) [ClassicSimilarity], result of:
          0.0017360178 = score(doc=927,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.060061958 = fieldWeight in 927, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=927)
      0.18181819 = coord(2/11)
    
    Abstract
    Extracting semantic relationships between entities from text documents is challenging in information extraction and important for deep information processing and management. This paper investigates the incorporation of diverse lexical, syntactic and semantic knowledge in feature-based relation extraction using support vector machines. Our study illustrates that the base phrase chunking information is very effective for relation extraction and contributes to most of the performance improvement from syntactic aspect while current commonly used features from full parsing give limited further enhancement. This suggests that most of useful information in full parse trees for relation extraction is shallow and can be captured by chunking. This indicates that a cheap and robust solution in relation extraction can be achieved without decreasing too much in performance. We also demonstrate how semantic information such as WordNet, can be used in feature-based relation extraction to further improve the performance. Evaluation on the ACE benchmark corpora shows that effective incorporation of diverse features enables our system outperform previously best-reported systems. It also shows that our feature-based system significantly outperforms tree kernel-based systems. This suggests that current tree kernels fail to effectively explore structured syntactic information in relation extraction.
    Source
    Information processing and management. 43(2007) no.4, S.969-982
    Type
    a
  16. Courrier, Y.: SYNTOL (2009) 0.00
    5.556734E-4 = product of:
      0.006112407 = sum of:
        0.006112407 = weight(_text_:a in 3887) [ClassicSimilarity], result of:
          0.006112407 = score(doc=3887,freq=10.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.19940455 = fieldWeight in 3887, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3887)
      0.09090909 = coord(1/11)
    
    Abstract
    In the 1960s and 1970s, a lot of work was done to develop indexing languages and models of indexing languages, in order to be able to produce the more specific indexing needed for highly specialized scientific papers. SYNTOL was a major contribution of the French to this activity. SYNTOL as a model was based on the linguistic distinction between paradigmatic and syntagmatic relations of words, and was intended to supply a complete and flexible platform for its own and other indexing languages.
    Type
    a

Languages

  • e 74
  • d 19
  • f 2
  • ja 1
  • More… Less…