Search (41 results, page 2 of 3)

  • × theme_ss:"Theorie verbaler Dokumentationssprachen"
  1. Fugmann, R.: ¬The complementarity of natural and index language in the field of information supply : an overview of their specific capabilities and limitations (2002) 0.01
    0.011609698 = product of:
      0.03482909 = sum of:
        0.03482909 = product of:
          0.06965818 = sum of:
            0.06965818 = weight(_text_:indexing in 1412) [ClassicSimilarity], result of:
              0.06965818 = score(doc=1412,freq=6.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.3662626 = fieldWeight in 1412, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1412)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Natural text phrasing is an indeterminate process and, thus, inherently lacks representational predictability. This holds true in particular in the Gase of general concepts and of their syntactical connectivity. Hence, natural language query phrasing and searching is an unending adventure of trial and error and, in most Gases, has an unsatisfactory outcome with respect to the recall and precision ratlos of the responses. Human indexing is based an knowledgeable document interpretation and aims - among other things - at introducing predictability into the representation of documents. Due to the indeterminacy of natural language text phrasing and image construction, any adequate indexing is also indeterminate in nature and therefore inherently defies any satisfactory algorithmization. But human indexing suffers from a different Set of deficiencies which are absent in the processing of non-interpreted natural language. An optimally effective information System combines both types of language in such a manner that their specific strengths are preserved and their weaknesses are avoided. lf the goal is a large and enduring information system for more than merely known-item searches, the expenditure for an advanced index language and its knowledgeable and careful employment is unavoidable.
  2. Hudon, M.: ¬A preliminary investigation of the usefulness of semantic relations and of standardized definitions for the purpose of specifying meaning in a thesaurus (1998) 0.01
    0.011375135 = product of:
      0.034125403 = sum of:
        0.034125403 = product of:
          0.068250805 = sum of:
            0.068250805 = weight(_text_:indexing in 55) [ClassicSimilarity], result of:
              0.068250805 = score(doc=55,freq=4.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.3588626 = fieldWeight in 55, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.046875 = fieldNorm(doc=55)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The terminological consistency of indexers working with a thesaurus as indexing aid remains low. This suggests that indexers cannot perceive easily or very clearly the meaning of each descriptor available as index term. This paper presents the background nd some of the findings of a small scale experiment designed to study the effect on interindexer terminological consistency of modifying the nature of the semantic information given with descriptors in a thesaurus. The study also provided some insights into the respective usefulness of standardized definitions and of traditional networks of hierarchical and associative relationships as means of providing essential meaning information in the thesaurus used as indexing aid
  3. Schmitz-Esser, W.: Language of general communication and concept compatibility (1996) 0.01
    0.011219318 = product of:
      0.033657953 = sum of:
        0.033657953 = product of:
          0.06731591 = sum of:
            0.06731591 = weight(_text_:22 in 6089) [ClassicSimilarity], result of:
              0.06731591 = score(doc=6089,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.38690117 = fieldWeight in 6089, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=6089)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Pages
    S.11-22
  4. Svenonius, E.: Unanswered questions in the design of controlled vocabularies (1986) 0.01
    0.01072458 = product of:
      0.032173738 = sum of:
        0.032173738 = product of:
          0.064347476 = sum of:
            0.064347476 = weight(_text_:indexing in 584) [ClassicSimilarity], result of:
              0.064347476 = score(doc=584,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.3383389 = fieldWeight in 584, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0625 = fieldNorm(doc=584)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The issue of free-text versus controlled vocabulary is examined in this article. The history of the issue, which is seen as beginning with the debate over title term indexing in the last century, is reviewed and the attention is turned to questions which have not been satisfactorily addressed by previous research. The point is made that these questions need to be answered if we are to design retrieval tools, such as thesauri, upon a national basis
  5. Weller, K.; Peters, I.: Reconsidering relationships for knowledge representation (2007) 0.01
    0.01072458 = product of:
      0.032173738 = sum of:
        0.032173738 = product of:
          0.064347476 = sum of:
            0.064347476 = weight(_text_:indexing in 216) [ClassicSimilarity], result of:
              0.064347476 = score(doc=216,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.3383389 = fieldWeight in 216, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0625 = fieldNorm(doc=216)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Classical knowledge representation methods traditionally work with established relations such as synonymy, hierarchy and unspecified associations. Recent developments like ontologies and folksonomies show new forms of collaboration, indexing and knowledge representation and encourage the reconsideration of standard knowledge relationships. In a summarizing overview we show which relations are currently utilized in elaborated knowledge representation methods and which may be inherently hidden in folksonomies and ontologies.
  6. Peters, I.; Weller. K.: Paradigmatic and syntagmatic relations in knowledge organization systems (2008) 0.01
    0.009384007 = product of:
      0.02815202 = sum of:
        0.02815202 = product of:
          0.05630404 = sum of:
            0.05630404 = weight(_text_:indexing in 1593) [ClassicSimilarity], result of:
              0.05630404 = score(doc=1593,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.29604656 = fieldWeight in 1593, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1593)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Classical knowledge representation methods have been successfully working for years with established - but in a way restricted and vague - relations such as synonymy, hierarchy (meronymy, hyponymy) and unspecified associations. Recent developments like ontologies and folksonomies show new forms of collaboration, indexing and knowledge representation and encourage the reconsideration of standard knowledge relationships for practical use. In a summarizing overview we show which relations are currently used in knowledge organization systems (controlled vocabularies, ontologies and folksonomies) and which relations are expressed explicitly or which may be inherently hidden in them.
  7. Fugmann, R.: ¬The complementarity of natural and indexing languages (1985) 0.01
    0.009287758 = product of:
      0.027863273 = sum of:
        0.027863273 = product of:
          0.055726547 = sum of:
            0.055726547 = weight(_text_:indexing in 3641) [ClassicSimilarity], result of:
              0.055726547 = score(doc=3641,freq=6.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2930101 = fieldWeight in 3641, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3641)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The second Cranfield experiment (Cranfield II) in the mid-1960s challenged assumptions held by librarians for nearly a century, namely, that the objective of providing subject access was to bring together all materials an a given topic and that the achieving of this objective required vocabulary control in the form of an index language. The results of Cranfield II were replicated by other retrieval experiments quick to follow its lead and increasing support was given to the opinion that natural language information systems could perform at least as effectively, and certainly more economically, than those employing index languages. When the results of empirical research dramatically counter conventional wisdom, an obvious course is to question the validity of the research and, in the case of retrieval experiments, this eventually happened. Retrieval experiments were criticized for their artificiality, their unrepresentative sampies, and their problematic definitions-particularly the definition of relevance. In the minds of some, at least, the relative merits of natural languages vs. indexing languages continued to be an unresolved issue. As with many eitherlor options, a seemingly safe course to follow is to opt for "both," and indeed there seems to be an increasing amount of counsel advising a combination of natural language and index language search capabilities. One strong voice offering such counsel is that of Robert Fugmann, a chemist by training, a theoretician by predilection, and, currently, a practicing information scientist at Hoechst AG, Frankfurt/Main. This selection from his writings sheds light an the capabilities and limitations of both kinds of indexing. Its special significance lies in the fact that its arguments are based not an empirical but an rational grounds. Fugmann's major argument starts from the observation that in natural language there are essentially two different kinds of concepts: 1) individual concepts, repre sented by names of individual things (e.g., the name of the town Augsburg), and 2) general concepts represented by names of classes of things (e.g., pesticides). Individual concepts can be represented in language simply and succinctly, often by a single string of alphanumeric characters; general concepts, an the other hand, can be expressed in a multiplicity of ways. The word pesticides refers to the concept of pesticides, but also referring to this concept are numerous circumlocutions, such as "Substance X was effective against pests." Because natural language is capable of infinite variety, we cannot predict a priori the manifold ways a general concept, like pesticides, will be represented by any given author. It is this lack of predictability that limits natural language retrieval and causes poor precision and recall. Thus, the essential and defining characteristic of an index language ls that it is a tool for representational predictability.
  8. Svenonius, E.: Unanswered questions in the design of controlled vocabularies (1997) 0.01
    0.0080434345 = product of:
      0.024130303 = sum of:
        0.024130303 = product of:
          0.048260607 = sum of:
            0.048260607 = weight(_text_:indexing in 583) [ClassicSimilarity], result of:
              0.048260607 = score(doc=583,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2537542 = fieldWeight in 583, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.046875 = fieldNorm(doc=583)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The issue of free-text versus controlled vocabulary is examined in this article. The history of the issue, which is seen as beginning with the debate over title term indexing in the last century, is reviewed and the attention is turned to questions which have not been satisfactorily addressed by previous research. The point is made that these questions need to be answered if we are to design retrieval tools, such as thesauri, upon a national basis
  9. Hoerman, H.L.; Furniss, K.A.: Turning practice into principles : a comparison of the IFLA Principles underlying Subject Heading Languages (SHLs) and the principles underlying the Library of Congress Subject Headings system (2000) 0.01
    0.0080434345 = product of:
      0.024130303 = sum of:
        0.024130303 = product of:
          0.048260607 = sum of:
            0.048260607 = weight(_text_:indexing in 5611) [ClassicSimilarity], result of:
              0.048260607 = score(doc=5611,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2537542 = fieldWeight in 5611, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5611)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The IFLA Section on Classification and Indexing's Working Group on Principles Underlying Subject Headings Languages has identified a set of eleven principles for subject heading languages and excerpted the texts that match each principle from the instructions for each of eleven national subject indexing systems, including excerpts from the LC's Subject Cataloging Manual: Subject Headings. This study compares the IFLA principles with other texts that express the principles underlying LCSH, especially Library of Congress Subject Headings: Principles of Structure and Policies for Application, prepared by Lois Mai Chan for the Library of Congress in 1990, Chan's later book on LCSH, and earlier documents by Haykin and Cutter. The principles are further elaborated for clarity and discussed
  10. Milstead, J.L.: Standards for relationships between subject indexing terms (2001) 0.01
    0.0080434345 = product of:
      0.024130303 = sum of:
        0.024130303 = product of:
          0.048260607 = sum of:
            0.048260607 = weight(_text_:indexing in 1148) [ClassicSimilarity], result of:
              0.048260607 = score(doc=1148,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2537542 = fieldWeight in 1148, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1148)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
  11. Principles underlying subject heading languages (SHLs) (1999) 0.01
    0.0080434345 = product of:
      0.024130303 = sum of:
        0.024130303 = product of:
          0.048260607 = sum of:
            0.048260607 = weight(_text_:indexing in 1659) [ClassicSimilarity], result of:
              0.048260607 = score(doc=1659,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2537542 = fieldWeight in 1659, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1659)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Issue
    Working Group on Principles Underlying Subject Heading Languages; approved by the Standing Committee of the IFLA Section on Classification and Indexing.
  12. Dextre Clarke, S.G.: Thesaural relationships (2001) 0.01
    0.007853523 = product of:
      0.023560567 = sum of:
        0.023560567 = product of:
          0.047121134 = sum of:
            0.047121134 = weight(_text_:22 in 1149) [ClassicSimilarity], result of:
              0.047121134 = score(doc=1149,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2708308 = fieldWeight in 1149, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1149)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 9.2007 15:45:57
  13. Boteram, F.: Semantische Relationen in Dokumentationssprachen : vom Thesaurus zum semantischen Netz (2010) 0.01
    0.007853523 = product of:
      0.023560567 = sum of:
        0.023560567 = product of:
          0.047121134 = sum of:
            0.047121134 = weight(_text_:22 in 4792) [ClassicSimilarity], result of:
              0.047121134 = score(doc=4792,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2708308 = fieldWeight in 4792, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4792)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  14. Rolling, L.: ¬The role of graphic display of concept relationships in indexing and retrieval vocabularies (1985) 0.01
    0.0075834226 = product of:
      0.022750268 = sum of:
        0.022750268 = product of:
          0.045500536 = sum of:
            0.045500536 = weight(_text_:indexing in 3646) [ClassicSimilarity], result of:
              0.045500536 = score(doc=3646,freq=4.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.23924173 = fieldWeight in 3646, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3646)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The use of diagrams to express relationships in classification is not new. Many classificationists have used this approach, but usually in a minor display to make a point or for part of a difficult relational situation. Ranganathan, for example, used diagrams for some of his more elusive concepts. The thesaurus in particular and subject headings in general, with direct and indirect crossreferences or equivalents, need many more diagrams than normally are included to make relationships and even semantics clear. A picture very often is worth a thousand words. Rolling has used directed graphs (arrowgraphs) to join terms as a practical method for rendering relationships between indexing terms lucid. He has succeeded very weIl in this endeavor. Four diagrams in this selection are all that one needs to explain how to employ the system; from initial listing to completed arrowgraph. The samples of his work include illustration of off-page connectors between arrowgraphs. The great advantage to using diagrams like this is that they present relations between individual terms in a format that is easy to comprehend. But of even greater value is the fact that one can use his arrowgraphs as schematics for making three-dimensional wire-and-ball models, in which the relationships may be seen even more clearly. In fact, errors or gaps in relations are much easier to find with this methodology. One also can get across the notion of the threedimensionality of classification systems with such models. Pettee's "hand reaching up and over" (q.v.) is not a figment of the imagination. While the actual hand is a wire or stick, the concept visualized is helpful in illuminating the three-dimensional figure that is latent in all systems that have cross-references or "broader," "narrower," or, especially, "related" terms. Classification schedules, being hemmed in by the dimensions of the printed page, also benefit from such physical illustrations. Rolling, an engineer by conviction, was the developer of information systems for the Cobalt Institute, the European Atomic Energy Community, and European Coal and Steel Community. He also developed and promoted computer-aided translation at the Commission of the European Communities in Luxembourg. One of his objectives has always been to increase the efficiency of mono- and multilingual thesauri for use in multinational information systems.
  15. Relationships in the organization of knowledge (2001) 0.01
    0.0067028617 = product of:
      0.020108584 = sum of:
        0.020108584 = product of:
          0.04021717 = sum of:
            0.04021717 = weight(_text_:indexing in 1139) [ClassicSimilarity], result of:
              0.04021717 = score(doc=1139,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.21146181 = fieldWeight in 1139, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1139)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Content
    Enthält u.a. die Beiträge: GREEN, R.: Relationships in the organization of knowledge: an overview; TILLETT, B.: Bibliographic relationships; CLARKE, S.G.D.: Thesaural relationships; MILSTEAD, J.L.: Standards for relationships between subject indexing terms; HUDON, M.: Relationships in multilingual thesauri; BODENREIDER, O. u. C.A. BEAN: Relationships among knowledge structures: vocabulary integration within a subject domain; BEGHTOL, C.: Relationships in classificatory structure and meaning; BEAN, C.A. u. R. GREEN: Relevance relationships; EL-HOSHY, L.M.: Relationships in Library of Congress Subject Headings; MOLHOLT, P.: The Art and Architecture Thesaurus: controlling relationships through rules and structure; NELSON, S.J. u.a.: Relationships in Medical Subject Headings (MeSH); NEELAMEGHAN, A.: Lateral relationships in multicultural, mulrilingual databases in the spiritual and religous domains: the OM information service; SATIJA, M.P.: Relationships in Ranganathan's Colon classification; MITCHELL, J.S.: Relationships in the Dewey Decimal Classification System
  16. Szostak, R.: Facet analysis using grammar (2017) 0.01
    0.0067028617 = product of:
      0.020108584 = sum of:
        0.020108584 = product of:
          0.04021717 = sum of:
            0.04021717 = weight(_text_:indexing in 3866) [ClassicSimilarity], result of:
              0.04021717 = score(doc=3866,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.21146181 = fieldWeight in 3866, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3866)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Basic grammar can achieve most/all of the goals of facet analysis without requiring the use of facet indicators. Facet analysis is thus rendered far simpler for classificationist, classifier, and user. We compare facet analysis and grammar, and show how various facets can be represented grammatically. We then address potential challenges in employing grammar as subject classification. A detailed review of basic grammar supports the hypothesis that it is feasible to usefully employ grammatical construction in subject classification. A manageable - and programmable - set of adjustments is required as classifiers move fairly directly from sentences in a document (or object or idea) description to formulating a subject classification. The user likewise can move fairly quickly from a query to the identification of relevant works. A review of theories in linguistics indicates that a grammatical approach should reduce ambiguity while encouraging ease of use. This paper applies the recommended approach to a small sample of recently published books. It finds that the approach is feasible and results in a more precise subject description than the subject headings assigned at present. It then explores PRECIS, an indexing system developed in the 1970s. Though our approach differs from PRECIS in many important ways, the experience of PRECIS supports our conclusions regarding both feasibility and precision.
  17. Jia, J.: From data to knowledge : the relationships between vocabularies, linked data and knowledge graphs (2021) 0.01
    0.005609659 = product of:
      0.016828977 = sum of:
        0.016828977 = product of:
          0.033657953 = sum of:
            0.033657953 = weight(_text_:22 in 106) [ClassicSimilarity], result of:
              0.033657953 = score(doc=106,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.19345059 = fieldWeight in 106, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=106)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 1.2021 14:24:32
  18. ¬The LCSH century : One hundred years with the Library of Congress Subject Headings system (2000) 0.01
    0.00536229 = product of:
      0.016086869 = sum of:
        0.016086869 = product of:
          0.032173738 = sum of:
            0.032173738 = weight(_text_:indexing in 1224) [ClassicSimilarity], result of:
              0.032173738 = score(doc=1224,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.16916946 = fieldWeight in 1224, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1224)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Content
    Enthält die Beiträge: BACKGROUND: Alva T STONE: The LCSH Century: A Brief History of the Library of Congress Subject Headings, and Introduction to the Centennial Essays - THEORY AND PRINCIPLES: Elaine SVENONIUS: LCSH: Semantics, Syntax and Specificity; Heidi Lee HOERMAN u. Kevin A. FURNISS: Turning Practice into Principles: A Comparison of the IFLA: Principles Underlying Subject Heading Languages (SHLs) and the Principles Underlying the Library of Congress Subject Headings System; Hope A. OLSON: Difference, Culture and Change:The Untapped Potential of LCSH - ONLINE ENVIRONMENT: Pauline Atherton COCHRANE: Improving LCSH for Use in Online Catalogs Revisited-What Progress Has Been Made? What Issues Still Remain?; Gregory WOOL: Filing and Precoordination: How Subject Headings Are Displayed in Online Catalogs and Why It Matters; Stephen HEARN: Machine-Assisted Validation of LC Subject Headings: Implications for Authority File Structure - SPECIFIC PERSPECTIVES: Thomas MANN: Teaching Library of Congress Subject Headings; Louisa J. KREIDER: LCSH Works! Subject Searching Effectiveness at the Cleveland Public Library and the Growth of Library of Congress Subject Headings Through Cooperation; Harriette HEMMASI u J. Bradford YOUNG: LCSH for Music: Historical and Empirical Perspectives; Joseph MILLER u. Patricia KUHR: LCSH and Periodical Indexing: Adoption vs. Adaptation; David P MILLER: Out from Under: Form/Genre Access in LCSH - WORLD VIEW: Magda HEINER-FREILING: Survey on Subject Heading Languages Used in National Libraries and Bibliographies; Andrew MacEWAN: Crossing Language Barriers in Europe: Linking LCSH to Other Subject Heading Languages; Alvaro QUIJANO-SOLIS u.a.: Automated Authority Files of Spanish-Language Subject Headings - FUTURE PROSPECTS: Lois Mai CHAN u. Theodora HODGES: Entering the Millennium: a new century for LCSH
  19. Dextre Clarke, S.G.; Gilchrist, A.; Will, L.: Revision and extension of thesaurus standards (2004) 0.01
    0.00536229 = product of:
      0.016086869 = sum of:
        0.016086869 = product of:
          0.032173738 = sum of:
            0.032173738 = weight(_text_:indexing in 2615) [ClassicSimilarity], result of:
              0.032173738 = score(doc=2615,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.16916946 = fieldWeight in 2615, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2615)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The current standards for monolingual and multilingual thesauri are long overdue for an update. This applies to the international standards ISO 2788 and ISO 5964, as well as the corresponding national standards in several countries and the American standard ANSI/NISO Z39.19. Work is now under way in the UK and in the USA to revise and extend the standards, with particular emphasis on interoperability needs in our world of vast electronic networks. Work in the UK is starting with the British Standards, in the hope of leading on to one international standard to serve all. Some of the issues still under discussion include the treatment of facet analysis, coverage of additional types of controlled vocabulary such as classification schemes, taxonomies and ontologies, and mapping from one vocabulary to another. 1. Are thesaurus standards still needed? Since the 1960s, even before the renowned Cranfield experiments (Cleverdon et al., 1966; Cleverdon, 1967) arguments have raged over the usefulness or otherwise of controlled vocabularies. The case has never been proved definitively one way or the other. At the same time, a recognition has become widespread that no one search method can answer all retrieval requirements. In today's environment of very large networks of resources, the skilled information professional uses a range of techniques. Among these, controlled vocabularies are valued alongside others. The first international standard for monolingual thesauri was issued in 1974. In those days, the main application was for postcoordinate indexing and retrieval from document collections or bibliographic databases. For many information professionals the only practicable alternative to a thesaurus was a classification scheme. And so the thesaurus developed a strong following. After computer systems with full text search capability became widely available, however, the arguments against controlled vocabularies gained more followers. The cost of building and maintaining a thesaurus or a classification scheme was a strong disincentive. Today's databases are typically immense compared with those three decades ago. Full text searching is taken for granted, not just in discrete databases but across all the resources in an intranet or even the Internet. But intranets have brought particular frustration as users discover that despite all the computer power, they cannot find items which they know to be present an the network. So the trend against controlled vocabularies is now being reversed, as many information professionals are turning to them for help. Standards to guide them are still in demand.
  20. ¬The LCSH century : One hundred years with the Library of Congress Subject Headings system (2000) 0.01
    0.00536229 = product of:
      0.016086869 = sum of:
        0.016086869 = product of:
          0.032173738 = sum of:
            0.032173738 = weight(_text_:indexing in 5366) [ClassicSimilarity], result of:
              0.032173738 = score(doc=5366,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.16916946 = fieldWeight in 5366, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5366)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Content
    Enthält die Beiträge: BACKGROUND: Alva T STONE: The LCSH Century: A Brief History of the Library of Congress Subject Headings, and Introduction to the Centennial Essays - THEORY AND PRINCIPLES: Elaine SVENONIUS: LCSH: Semantics, Syntax and Specificity; Heidi Lee HOERMAN u. Kevin A. FURNISS: Turning Practice into Principles: A Comparison of the IFLA: Principles Underlying Subject Heading Languages (SHLs) and the Principles Underlying the Library of Congress Subject Headings System; Hope A. OLSON: Difference, Culture and Change:The Untapped Potential of LCSH - ONLINE ENVIRONMENT: Pauline Atherton COCHRANE: Improving LCSH for Use in Online Catalogs Revisited-What Progress Has Been Made? What Issues Still Remain?; Gregory WOOL: Filing and Precoordination: How Subject Headings Are Displayed in Online Catalogs and Why It Matters; Stephen HEARN: Machine-Assisted Validation of LC Subject Headings: Implications for Authority File Structure - SPECIFIC PERSPECTIVES: Thomas MANN: Teaching Library of Congress Subject Headings; Louisa J. KREIDER: LCSH Works! Subject Searching Effectiveness at the Cleveland Public Library and the Growth of Library of Congress Subject Headings Through Cooperation; Harriette HEMMASI u J. Bradford YOUNG: LCSH for Music: Historical and Empirical Perspectives; Joseph MILLER u. Patricia KUHR: LCSH and Periodical Indexing: Adoption vs. Adaptation; David P MILLER: Out from Under: Form/Genre Access in LCSH - WORLD VIEW: Magda HEINER-FREILING: Survey on Subject Heading Languages Used in National Libraries and Bibliographies; Andrew MacEWAN: Crossing Language Barriers in Europe: Linking LCSH to Other Subject Heading Languages; Alvaro QUIJANO-SOLIS u.a.: Automated Authority Files of Spanish-Language Subject Headings - FUTURE PROSPECTS: Lois Mai CHAN u. Theodora HODGES: Entering the Millennium: a new century for LCSH

Languages

  • e 37
  • f 2
  • d 1
  • nl 1
  • More… Less…

Types

  • a 32
  • m 6
  • s 6
  • d 1
  • el 1
  • More… Less…