Search (97 results, page 1 of 5)

  • × theme_ss:"Theorie verbaler Dokumentationssprachen"
  1. Mai, J.-E.: Actors, domains, and constraints in the design and construction of controlled vocabularies (2008) 0.03
    0.032186374 = product of:
      0.07241934 = sum of:
        0.01795313 = weight(_text_:retrieval in 1921) [ClassicSimilarity], result of:
          0.01795313 = score(doc=1921,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.16710453 = fieldWeight in 1921, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1921)
        0.026017427 = weight(_text_:use in 1921) [ClassicSimilarity], result of:
          0.026017427 = score(doc=1921,freq=4.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.23922569 = fieldWeight in 1921, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1921)
        0.020355828 = weight(_text_:of in 1921) [ClassicSimilarity], result of:
          0.020355828 = score(doc=1921,freq=36.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.36650562 = fieldWeight in 1921, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1921)
        0.008092954 = product of:
          0.02427886 = sum of:
            0.02427886 = weight(_text_:29 in 1921) [ClassicSimilarity], result of:
              0.02427886 = score(doc=1921,freq=2.0), product of:
                0.12493842 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.035517205 = queryNorm
                0.19432661 = fieldWeight in 1921, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1921)
          0.33333334 = coord(1/3)
      0.44444445 = coord(4/9)
    
    Abstract
    Classification schemes, thesauri, taxonomies, and other controlled vocabularies play important roles in the organization and retrieval of information in many different environments. While the design and construction of controlled vocabularies have been prescribed at the technical level in great detail over the past decades, the methodological level has been somewhat neglected. However, classification research has in recent years focused on developing approaches to the analysis of users, domains, and activities that could produce requirements for the design of controlled vocabularies. Researchers have often argued that the design, construction, and use of controlled vocabularies need to be based on analyses and understandings of the contexts in which these controlled vocabularies function. While one would assume that the growing body of research on human information behavior might help guide the development of controlled vocabularies shed light on these contexts, unfortunately, much of the research in this area is descriptive in nature and of little use for systems design. This paper discusses these trends and outlines a holistic approach that demonstrates how the design of controlled vocabularies can be informed by investigations of people's interactions with information. This approach is based on the Cognitive Work Analysis framework and outlines several dimensions of human-information interactions. Application of this approach will result is a comprehensive understanding of the contexts in which the controlled vocabulary will function and which can be used for the development of for the development of controlled vocabularies.
    Source
    Knowledge organization. 35(2008) no.1, S.16-29
  2. Riesthuis, G.J.A.: Zoeken met woorden : hergebruik van onderwerpsontsluiting (1998) 0.03
    0.029773641 = product of:
      0.08932092 = sum of:
        0.03590626 = weight(_text_:retrieval in 3154) [ClassicSimilarity], result of:
          0.03590626 = score(doc=3154,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.33420905 = fieldWeight in 3154, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.078125 = fieldNorm(doc=3154)
        0.036794197 = weight(_text_:use in 3154) [ClassicSimilarity], result of:
          0.036794197 = score(doc=3154,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.3383162 = fieldWeight in 3154, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.078125 = fieldNorm(doc=3154)
        0.016620465 = weight(_text_:of in 3154) [ClassicSimilarity], result of:
          0.016620465 = score(doc=3154,freq=6.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.2992506 = fieldWeight in 3154, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.078125 = fieldNorm(doc=3154)
      0.33333334 = coord(3/9)
    
    Abstract
    Theory of information languages. Decomposition of UDC-notations
    Footnote
    Übers. d. Titels: Searching with words: re-use of subject indexing
    Theme
    Klassifikationssysteme im Online-Retrieval
  3. Green, R.: Syntagmatic relationships in index languages : a reassessment (1995) 0.03
    0.027859783 = product of:
      0.08357935 = sum of:
        0.03554538 = weight(_text_:retrieval in 3144) [ClassicSimilarity], result of:
          0.03554538 = score(doc=3144,freq=4.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.33085006 = fieldWeight in 3144, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3144)
        0.025755936 = weight(_text_:use in 3144) [ClassicSimilarity], result of:
          0.025755936 = score(doc=3144,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.23682132 = fieldWeight in 3144, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3144)
        0.022278037 = weight(_text_:of in 3144) [ClassicSimilarity], result of:
          0.022278037 = score(doc=3144,freq=22.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.40111488 = fieldWeight in 3144, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3144)
      0.33333334 = coord(3/9)
    
    Abstract
    Effective use of syntagmatic relationships in index languages has suffered from inaccurate or incomplete characterization in both linguistics and information science. A number of 'myths' about syntagmatic relationships are debunked: the exclusivity of paradigmatic and syntagmatic relationships, linearity as a defining characteristic of syntagmatic relationships, the restriction of syntagmatic relationships to surface linguistic units, the limitation of syntagmatic relationship benefits in document retrieval to precision, and the general irrelevance of syntagmatic relationships for document retrieval. None of the mechanisms currently used with index languages is powerful enough to achieve the levels of precision and recall that the expression of conceptual syntagmatic relationships is in theory capable of. New designs for expressing these relationships in index languages will need to take into account such characteristics as their semantic nature, systematicity, generalizability and constituent nature
  4. Tudhope, D.; Alani, H.; Jones, C.: Augmenting thesaurus relationships : possibilities for retrieval (2001) 0.03
    0.026842773 = product of:
      0.08052832 = sum of:
        0.040144417 = weight(_text_:retrieval in 1520) [ClassicSimilarity], result of:
          0.040144417 = score(doc=1520,freq=10.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.37365708 = fieldWeight in 1520, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1520)
        0.018397098 = weight(_text_:use in 1520) [ClassicSimilarity], result of:
          0.018397098 = score(doc=1520,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.1691581 = fieldWeight in 1520, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1520)
        0.021986805 = weight(_text_:of in 1520) [ClassicSimilarity], result of:
          0.021986805 = score(doc=1520,freq=42.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.39587128 = fieldWeight in 1520, product of:
              6.4807405 = tf(freq=42.0), with freq of:
                42.0 = termFreq=42.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1520)
      0.33333334 = coord(3/9)
    
    Abstract
    This paper discusses issues concerning the augmentation of thesaurus relationships, in light of new application possibilities for retrieval. We first discuss a case study that explored the retrieval potential of an augmented set of thesaurus relationships by specialising standard relationships into richer subtypes, in particular hierarchical geographical containment and the associative relationship. We then locate this work in a broader context by reviewing various attempts to build taxonomies of thesaurus relationships, and conclude by discussing the feasibility of hierarchically augmenting the core set of thesaurus relationships, particularly the associative relationship. We discuss the possibility of enriching the specification and semantics of Related Term (RT relationships), while maintaining compatibility with traditional thesauri via a limited hierarchical extension of the associative (and hierarchical) relationships. This would be facilitated by distinguishing the type of term from the (sub)type of relationship and explicitly specifying semantic categories for terms following a faceted approach. We first illustrate how hierarchical spatial relationships can be used to provide more flexible retrieval for queries incorporating place names in applications employing online gazetteers and geographical thesauri. We then employ a set of experimental scenarios to investigate key issues affecting use of the associative (RT) thesaurus relationships in semantic distance measures. Previous work has noted the potential of RTs in thesaurus search aids but also the problem of uncontrolled expansion of query term sets. Results presented in this paper suggest the potential for taking account of the hierarchical context of an RT link and specialisations of the RT relationship
    Source
    Journal of digital information. 1(2001) no.8
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  5. Engerer, V.: Control and syntagmatization : vocabulary requirements in information retrieval thesauri and natural language lexicons (2017) 0.03
    0.025225354 = product of:
      0.07567606 = sum of:
        0.03731488 = weight(_text_:retrieval in 3678) [ClassicSimilarity], result of:
          0.03731488 = score(doc=3678,freq=6.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.34732026 = fieldWeight in 3678, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=3678)
        0.022076517 = weight(_text_:use in 3678) [ClassicSimilarity], result of:
          0.022076517 = score(doc=3678,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.20298971 = fieldWeight in 3678, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.046875 = fieldNorm(doc=3678)
        0.016284661 = weight(_text_:of in 3678) [ClassicSimilarity], result of:
          0.016284661 = score(doc=3678,freq=16.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.2932045 = fieldWeight in 3678, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3678)
      0.33333334 = coord(3/9)
    
    Abstract
    This paper explores the relationships between natural language lexicons in lexical semantics and thesauri in information retrieval research. These different areas of knowledge have different restrictions on use of vocabulary; thesauri are used only in information search and retrieval contexts, whereas lexicons are mental systems and generally applicable in all domains of life. A set of vocabulary requirements that defines the more concrete characteristics of vocabulary items in the 2 contexts can be derived from this framework: lexicon items have to be learnable, complex, transparent, etc., whereas thesaurus terms must be effective, current and relevant, searchable, etc. The differences in vocabulary properties correlate with 2 other factors, the well-known dimension of Control (deliberate, social activities of building and maintaining vocabularies), and Syntagmatization, which is less known and describes vocabulary items' varying formal preparedness to exit the thesaurus/lexicon, enter into linear syntactic constructions, and, finally, acquire communicative functionality. It is proposed that there is an inverse relationship between Control and Syntagmatization.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.6, S.1480-1490
  6. Melton, J.S.: ¬A use for the techniques of structural linguistics in documentation research (1965) 0.03
    0.025108635 = product of:
      0.07532591 = sum of:
        0.028725008 = weight(_text_:retrieval in 834) [ClassicSimilarity], result of:
          0.028725008 = score(doc=834,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.26736724 = fieldWeight in 834, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=834)
        0.029435357 = weight(_text_:use in 834) [ClassicSimilarity], result of:
          0.029435357 = score(doc=834,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.27065295 = fieldWeight in 834, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0625 = fieldNorm(doc=834)
        0.017165542 = weight(_text_:of in 834) [ClassicSimilarity], result of:
          0.017165542 = score(doc=834,freq=10.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.3090647 = fieldWeight in 834, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=834)
      0.33333334 = coord(3/9)
    
    Abstract
    Index language (the system of symbols for representing subject content after analysis) is considered as a separate component and a variable in an information retrieval system. It is suggested that for purposes of testing, comparing and evaluating index language, the techniques of structural linguistics may provide a descriptive methodology by which all such languages (hierarchical and faceted classification, analytico-synthetic indexing, traditional subject indexing, indexes and classifications based on automatic text analysis, etc.) could be described in term of a linguistic model, and compared on a common basis
  7. Mooers, C.N.: ¬The indexing language of an information retrieval system (1985) 0.02
    0.024225852 = product of:
      0.054508165 = sum of:
        0.021767013 = weight(_text_:retrieval in 3644) [ClassicSimilarity], result of:
          0.021767013 = score(doc=3644,freq=6.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.20260347 = fieldWeight in 3644, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02734375 = fieldNorm(doc=3644)
        0.012877968 = weight(_text_:use in 3644) [ClassicSimilarity], result of:
          0.012877968 = score(doc=3644,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.11841066 = fieldWeight in 3644, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.02734375 = fieldNorm(doc=3644)
        0.014249079 = weight(_text_:of in 3644) [ClassicSimilarity], result of:
          0.014249079 = score(doc=3644,freq=36.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.25655392 = fieldWeight in 3644, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.02734375 = fieldNorm(doc=3644)
        0.0056141065 = product of:
          0.016842319 = sum of:
            0.016842319 = weight(_text_:22 in 3644) [ClassicSimilarity], result of:
              0.016842319 = score(doc=3644,freq=2.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.1354154 = fieldWeight in 3644, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=3644)
          0.33333334 = coord(1/3)
      0.44444445 = coord(4/9)
    
    Abstract
    Calvin Mooers' work toward the resolution of the problem of ambiguity in indexing went unrecognized for years. At the time he introduced the "descriptor" - a term with a very distinct meaning-indexers were, for the most part, taking index terms directly from the document, without either rationalizing them with context or normalizing them with some kind of classification. It is ironic that Mooers' term came to be attached to the popular but unsophisticated indexing methods which he was trying to root out. Simply expressed, what Mooers did was to take the dictionary definitions of terms and redefine them so clearly that they could not be used in any context except that provided by the new definition. He did, at great pains, construct such meanings for over four hundred words; disambiguation and specificity were sought after and found for these words. He proposed that all indexers adopt this method so that when the index supplied a term, it also supplied the exact meaning for that term as used in the indexed document. The same term used differently in another document would be defined differently and possibly renamed to avoid ambiguity. The disambiguation was achieved by using unabridged dictionaries and other sources of defining terminology. In practice, this tends to produce circularity in definition, that is, word A refers to word B which refers to word C which refers to word A. It was necessary, therefore, to break this chain by creating a new, definitive meaning for each word. Eventually, means such as those used by Austin (q.v.) for PRECIS achieved the same purpose, but by much more complex means than just creating a unique definition of each term. Mooers, however, was probably the first to realize how confusing undefined terminology could be. Early automatic indexers dealt with distinct disciplines and, as long as they did not stray beyond disciplinary boundaries, a quick and dirty keyword approach was satisfactory. The trouble came when attempts were made to make a combined index for two or more distinct disciplines. A number of processes have since been developed, mostly involving tagging of some kind or use of strings. Mooers' solution has rarely been considered seriously and probably would be extremely difficult to apply now because of so much interdisciplinarity. But for a specific, weIl defined field, it is still weIl worth considering. Mooers received training in mathematics and physics from the University of Minnesota and the Massachusetts Institute of Technology. He was the founder of Zator Company, which developed and marketed a coded card information retrieval system, and of Rockford Research, Inc., which engages in research in information science. He is the inventor of the TRAC computer language.
    Footnote
    Original in: Information retrieval today: papers presented at an Institute conducted by the Library School and the Center for Continuation Study, University of Minnesota, Sept. 19-22, 1962. Ed. by Wesley Simonton. Minneapolis, Minn.: The Center, 1963. S.21-36.
    Source
    Theory of subject analysis: a sourcebook. Ed.: L.M. Chan, et al
  8. Milstead, J.L.: Standards for relationships between subject indexing terms (2001) 0.02
    0.02334572 = product of:
      0.07003716 = sum of:
        0.021543756 = weight(_text_:retrieval in 1148) [ClassicSimilarity], result of:
          0.021543756 = score(doc=1148,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.20052543 = fieldWeight in 1148, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=1148)
        0.031220913 = weight(_text_:use in 1148) [ClassicSimilarity], result of:
          0.031220913 = score(doc=1148,freq=4.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.2870708 = fieldWeight in 1148, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.046875 = fieldNorm(doc=1148)
        0.017272491 = weight(_text_:of in 1148) [ClassicSimilarity], result of:
          0.017272491 = score(doc=1148,freq=18.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.3109903 = fieldWeight in 1148, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1148)
      0.33333334 = coord(3/9)
    
    Abstract
    Relationships between the terms in thesauri and Indexes are the subject of national and international standards. The standards for thesauri enumerate and provide criteria for three basic types of relationship: equivalence, hierarchical, and associative. Standards and guidelines for indexes draw an the thesaurus standards to provide less detailed guidance for showing relationships between the terms used in an Index. The international standard for multilingual thesauri adds recommendations for assuring equal treatment of the languages of a thesaurus. The present standards were developed when lookup and search were essentially manual, and the value of the kinds of relationships has never been determined. It is not clear whether users understand or can use the distinctions between kinds of relationships. On the other hand, sophisticated text analysis systems may be able both to assist with development of more powerful term relationship schemes and to use the relationships to improve retrieval.
    Source
    Relationships in the organization of knowledge. Eds.: Bean, C.A. u. R. Green
  9. Miller, U.; Teitelbaum, R.: Pre-coordination and post-coordination : past and future (2002) 0.02
    0.022766106 = product of:
      0.06829832 = sum of:
        0.043534026 = weight(_text_:retrieval in 1395) [ClassicSimilarity], result of:
          0.043534026 = score(doc=1395,freq=6.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.40520695 = fieldWeight in 1395, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1395)
        0.013434161 = weight(_text_:of in 1395) [ClassicSimilarity], result of:
          0.013434161 = score(doc=1395,freq=8.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.24188137 = fieldWeight in 1395, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1395)
        0.011330134 = product of:
          0.0339904 = sum of:
            0.0339904 = weight(_text_:29 in 1395) [ClassicSimilarity], result of:
              0.0339904 = score(doc=1395,freq=2.0), product of:
                0.12493842 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.035517205 = queryNorm
                0.27205724 = fieldWeight in 1395, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1395)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    This article deals with the meaningful processing of information in relation to two systems of Information processing: pre-coordination and post-coordination. The different approaches are discussed, with emphasis an the need for a controlled vocabulary in information retrieval. Assigned indexing, which employs a controlled vocabulary, is described in detail. Types of indexing language can be divided into two broad groups - those using pre-coordinated terms and those depending an post-coordination. They represent two different basic approaches in processing and Information retrieval. The historical development of these two approaches is described, as well as the two tools that apply to these approaches: thesauri and subject headings.
    Source
    Knowledge organization. 29(2002) no.2, S.87-93
    Theme
    Verbale Doksprachen im Online-Retrieval
  10. Gilchrist, A.: Structure and function in retrieval (2006) 0.02
    0.022040628 = product of:
      0.06612188 = sum of:
        0.03731488 = weight(_text_:retrieval in 5585) [ClassicSimilarity], result of:
          0.03731488 = score(doc=5585,freq=6.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.34732026 = fieldWeight in 5585, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=5585)
        0.01909546 = weight(_text_:of in 5585) [ClassicSimilarity], result of:
          0.01909546 = score(doc=5585,freq=22.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.34381276 = fieldWeight in 5585, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=5585)
        0.009711544 = product of:
          0.029134631 = sum of:
            0.029134631 = weight(_text_:29 in 5585) [ClassicSimilarity], result of:
              0.029134631 = score(doc=5585,freq=2.0), product of:
                0.12493842 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.035517205 = queryNorm
                0.23319192 = fieldWeight in 5585, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5585)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    Purpose - This paper forms part of the series "60 years of the best in information research", marking the 60th anniversary of the Journal of Documentation. It aims to review the influence of Brian Vickery's 1971 paper, "Structure and function in retrieval languages". The paper is not an update of Vickery's work, but a comment on a greatly changed environment, in which his analysis still has much validity. Design/methodology/approach - A commentary on selected literature illustrates the continuing relevance of Vickery's ideas. Findings - Generic survey and specific reference are still the main functions of retrieval languages, with minor functional additions such as relevance ranking. New structures are becoming increasingly significant, through developments such as XML. Future development in artificial intelligence hold out new prospects still. Originality/value - The paper shows the continuing relevance of "traditional" ideas of information science from the 1960s and 1970s.
    Source
    Journal of documentation. 62(2006) no.1, S.21-29
  11. ¬The LCSH century : One hundred years with the Library of Congress Subject Headings system (2000) 0.02
    0.02195282 = product of:
      0.049393844 = sum of:
        0.014362504 = weight(_text_:retrieval in 1224) [ClassicSimilarity], result of:
          0.014362504 = score(doc=1224,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.13368362 = fieldWeight in 1224, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=1224)
        0.014717679 = weight(_text_:use in 1224) [ClassicSimilarity], result of:
          0.014717679 = score(doc=1224,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.13532647 = fieldWeight in 1224, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.03125 = fieldNorm(doc=1224)
        0.013839302 = weight(_text_:of in 1224) [ClassicSimilarity], result of:
          0.013839302 = score(doc=1224,freq=26.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.2491759 = fieldWeight in 1224, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=1224)
        0.006474362 = product of:
          0.019423086 = sum of:
            0.019423086 = weight(_text_:29 in 1224) [ClassicSimilarity], result of:
              0.019423086 = score(doc=1224,freq=2.0), product of:
                0.12493842 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.035517205 = queryNorm
                0.15546128 = fieldWeight in 1224, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1224)
          0.33333334 = coord(1/3)
      0.44444445 = coord(4/9)
    
    Content
    Enthält die Beiträge: BACKGROUND: Alva T STONE: The LCSH Century: A Brief History of the Library of Congress Subject Headings, and Introduction to the Centennial Essays - THEORY AND PRINCIPLES: Elaine SVENONIUS: LCSH: Semantics, Syntax and Specificity; Heidi Lee HOERMAN u. Kevin A. FURNISS: Turning Practice into Principles: A Comparison of the IFLA: Principles Underlying Subject Heading Languages (SHLs) and the Principles Underlying the Library of Congress Subject Headings System; Hope A. OLSON: Difference, Culture and Change:The Untapped Potential of LCSH - ONLINE ENVIRONMENT: Pauline Atherton COCHRANE: Improving LCSH for Use in Online Catalogs Revisited-What Progress Has Been Made? What Issues Still Remain?; Gregory WOOL: Filing and Precoordination: How Subject Headings Are Displayed in Online Catalogs and Why It Matters; Stephen HEARN: Machine-Assisted Validation of LC Subject Headings: Implications for Authority File Structure - SPECIFIC PERSPECTIVES: Thomas MANN: Teaching Library of Congress Subject Headings; Louisa J. KREIDER: LCSH Works! Subject Searching Effectiveness at the Cleveland Public Library and the Growth of Library of Congress Subject Headings Through Cooperation; Harriette HEMMASI u J. Bradford YOUNG: LCSH for Music: Historical and Empirical Perspectives; Joseph MILLER u. Patricia KUHR: LCSH and Periodical Indexing: Adoption vs. Adaptation; David P MILLER: Out from Under: Form/Genre Access in LCSH - WORLD VIEW: Magda HEINER-FREILING: Survey on Subject Heading Languages Used in National Libraries and Bibliographies; Andrew MacEWAN: Crossing Language Barriers in Europe: Linking LCSH to Other Subject Heading Languages; Alvaro QUIJANO-SOLIS u.a.: Automated Authority Files of Spanish-Language Subject Headings - FUTURE PROSPECTS: Lois Mai CHAN u. Theodora HODGES: Entering the Millennium: a new century for LCSH
    LCSH
    Subject heading, Library of Congress
    Series
    Cataloging and classification quarterly; vol.29, nos.1/2
    Subject
    Subject heading, Library of Congress
    Theme
    Verbale Doksprachen im Online-Retrieval
  12. ¬The LCSH century : One hundred years with the Library of Congress Subject Headings system (2000) 0.02
    0.021711519 = product of:
      0.048850916 = sum of:
        0.014362504 = weight(_text_:retrieval in 5366) [ClassicSimilarity], result of:
          0.014362504 = score(doc=5366,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.13368362 = fieldWeight in 5366, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=5366)
        0.014717679 = weight(_text_:use in 5366) [ClassicSimilarity], result of:
          0.014717679 = score(doc=5366,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.13532647 = fieldWeight in 5366, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.03125 = fieldNorm(doc=5366)
        0.013296372 = weight(_text_:of in 5366) [ClassicSimilarity], result of:
          0.013296372 = score(doc=5366,freq=24.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.23940048 = fieldWeight in 5366, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=5366)
        0.006474362 = product of:
          0.019423086 = sum of:
            0.019423086 = weight(_text_:29 in 5366) [ClassicSimilarity], result of:
              0.019423086 = score(doc=5366,freq=2.0), product of:
                0.12493842 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.035517205 = queryNorm
                0.15546128 = fieldWeight in 5366, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5366)
          0.33333334 = coord(1/3)
      0.44444445 = coord(4/9)
    
    Content
    Enthält die Beiträge: BACKGROUND: Alva T STONE: The LCSH Century: A Brief History of the Library of Congress Subject Headings, and Introduction to the Centennial Essays - THEORY AND PRINCIPLES: Elaine SVENONIUS: LCSH: Semantics, Syntax and Specificity; Heidi Lee HOERMAN u. Kevin A. FURNISS: Turning Practice into Principles: A Comparison of the IFLA: Principles Underlying Subject Heading Languages (SHLs) and the Principles Underlying the Library of Congress Subject Headings System; Hope A. OLSON: Difference, Culture and Change:The Untapped Potential of LCSH - ONLINE ENVIRONMENT: Pauline Atherton COCHRANE: Improving LCSH for Use in Online Catalogs Revisited-What Progress Has Been Made? What Issues Still Remain?; Gregory WOOL: Filing and Precoordination: How Subject Headings Are Displayed in Online Catalogs and Why It Matters; Stephen HEARN: Machine-Assisted Validation of LC Subject Headings: Implications for Authority File Structure - SPECIFIC PERSPECTIVES: Thomas MANN: Teaching Library of Congress Subject Headings; Louisa J. KREIDER: LCSH Works! Subject Searching Effectiveness at the Cleveland Public Library and the Growth of Library of Congress Subject Headings Through Cooperation; Harriette HEMMASI u J. Bradford YOUNG: LCSH for Music: Historical and Empirical Perspectives; Joseph MILLER u. Patricia KUHR: LCSH and Periodical Indexing: Adoption vs. Adaptation; David P MILLER: Out from Under: Form/Genre Access in LCSH - WORLD VIEW: Magda HEINER-FREILING: Survey on Subject Heading Languages Used in National Libraries and Bibliographies; Andrew MacEWAN: Crossing Language Barriers in Europe: Linking LCSH to Other Subject Heading Languages; Alvaro QUIJANO-SOLIS u.a.: Automated Authority Files of Spanish-Language Subject Headings - FUTURE PROSPECTS: Lois Mai CHAN u. Theodora HODGES: Entering the Millennium: a new century for LCSH
    Footnote
    Die einzelnen Beiträge sind über die Buchversion erfasst: In: The LCSH century: one hundred years with the Library of Congress Subject Headings system. Ed.: A.T. Stone. New York: Haworth Press 2000.
    Source
    Cataloging and classification quarterly. 29(2000) nos.1/2, S.1-249
    Theme
    Verbale Doksprachen im Online-Retrieval
  13. Rolling, L.: ¬The role of graphic display of concept relationships in indexing and retrieval vocabularies (1985) 0.02
    0.018712979 = product of:
      0.056138933 = sum of:
        0.014362504 = weight(_text_:retrieval in 3646) [ClassicSimilarity], result of:
          0.014362504 = score(doc=3646,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.13368362 = fieldWeight in 3646, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=3646)
        0.025491768 = weight(_text_:use in 3646) [ClassicSimilarity], result of:
          0.025491768 = score(doc=3646,freq=6.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.23439234 = fieldWeight in 3646, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.03125 = fieldNorm(doc=3646)
        0.016284661 = weight(_text_:of in 3646) [ClassicSimilarity], result of:
          0.016284661 = score(doc=3646,freq=36.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.2932045 = fieldWeight in 3646, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=3646)
      0.33333334 = coord(3/9)
    
    Abstract
    The use of diagrams to express relationships in classification is not new. Many classificationists have used this approach, but usually in a minor display to make a point or for part of a difficult relational situation. Ranganathan, for example, used diagrams for some of his more elusive concepts. The thesaurus in particular and subject headings in general, with direct and indirect crossreferences or equivalents, need many more diagrams than normally are included to make relationships and even semantics clear. A picture very often is worth a thousand words. Rolling has used directed graphs (arrowgraphs) to join terms as a practical method for rendering relationships between indexing terms lucid. He has succeeded very weIl in this endeavor. Four diagrams in this selection are all that one needs to explain how to employ the system; from initial listing to completed arrowgraph. The samples of his work include illustration of off-page connectors between arrowgraphs. The great advantage to using diagrams like this is that they present relations between individual terms in a format that is easy to comprehend. But of even greater value is the fact that one can use his arrowgraphs as schematics for making three-dimensional wire-and-ball models, in which the relationships may be seen even more clearly. In fact, errors or gaps in relations are much easier to find with this methodology. One also can get across the notion of the threedimensionality of classification systems with such models. Pettee's "hand reaching up and over" (q.v.) is not a figment of the imagination. While the actual hand is a wire or stick, the concept visualized is helpful in illuminating the three-dimensional figure that is latent in all systems that have cross-references or "broader," "narrower," or, especially, "related" terms. Classification schedules, being hemmed in by the dimensions of the printed page, also benefit from such physical illustrations. Rolling, an engineer by conviction, was the developer of information systems for the Cobalt Institute, the European Atomic Energy Community, and European Coal and Steel Community. He also developed and promoted computer-aided translation at the Commission of the European Communities in Luxembourg. One of his objectives has always been to increase the efficiency of mono- and multilingual thesauri for use in multinational information systems.
    Footnote
    Original in: Classification research: Proceedings of the Second International Study Conference held at Hotel Prins Hamlet, Elsinore, Denmark, 14th-18th Sept. 1964. Ed.: Pauline Atherton. Copenhagen: Munksgaard 1965. S.295-310.
    Source
    Theory of subject analysis: a sourcebook. Ed.: L.M. Chan, et al
  14. Dextre Clarke, S.G.: Thesaural relationships (2001) 0.02
    0.018044773 = product of:
      0.054134317 = sum of:
        0.02513438 = weight(_text_:retrieval in 1149) [ClassicSimilarity], result of:
          0.02513438 = score(doc=1149,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.23394634 = fieldWeight in 1149, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1149)
        0.017771725 = weight(_text_:of in 1149) [ClassicSimilarity], result of:
          0.017771725 = score(doc=1149,freq=14.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.31997898 = fieldWeight in 1149, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1149)
        0.011228213 = product of:
          0.033684637 = sum of:
            0.033684637 = weight(_text_:22 in 1149) [ClassicSimilarity], result of:
              0.033684637 = score(doc=1149,freq=2.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.2708308 = fieldWeight in 1149, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1149)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    A thesaurus in the controlled vocabulary environment is a tool designed to support effective infonnation retrieval (IR) by guiding indexers and searchers consistently to choose the same terms for expressing a given concept or combination of concepts. Terms in the thesaurus are linked by relationships of three well-known types: equivalence, hierarchical, and associative. The functions and properties of these three basic types and some subcategories are described, as well as some additional relationship types conunonly found in thesauri. Progressive automation of IR processes and the capability for simultaneous searching of vast networked resources are creating some pressures for change in the categorization and consistency of relationships.
    Date
    22. 9.2007 15:45:57
    Source
    Relationships in the organization of knowledge. Eds.: Bean, C.A. u. R. Green
  15. Maniez, J.: Fusion de banques de donnees documentaires at compatibilite des languages d'indexation (1997) 0.02
    0.016754467 = product of:
      0.050263397 = sum of:
        0.021543756 = weight(_text_:retrieval in 2246) [ClassicSimilarity], result of:
          0.021543756 = score(doc=2246,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.20052543 = fieldWeight in 2246, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=2246)
        0.01909546 = weight(_text_:of in 2246) [ClassicSimilarity], result of:
          0.01909546 = score(doc=2246,freq=22.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.34381276 = fieldWeight in 2246, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2246)
        0.009624182 = product of:
          0.028872546 = sum of:
            0.028872546 = weight(_text_:22 in 2246) [ClassicSimilarity], result of:
              0.028872546 = score(doc=2246,freq=2.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.23214069 = fieldWeight in 2246, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2246)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    Discusses the apparently unattainable goal of compatibility of information languages. While controlled languages can improve retrieval performance within a single system, they make cooperation across different systems more difficult. The Internet and downloading accentuate this adverse outcome and the acceleration of data exchange aggravates the problem of compatibility. Defines this familiar concept and demonstrates that coherence is just as necessary as it was for indexing languages, the proliferation of which has created confusion in grouped data banks. Describes 2 types of potential solutions, similar to those applied to automatic translation of natural languages: - harmonizing the information languages themselves, both difficult and expensive, or, the more flexible solution involving automatic harmonization of indexing formulae based on pre established concordance tables. However, structural incompatibilities between post coordinated languages and classifications may lead any harmonization tools up a blind alley, while the paths of a universal concordance model are rare and narrow
    Date
    1. 8.1996 22:01:00
    Footnote
    Übers. d. Titels: Integration of information data banks and compatibility of indexing languages
  16. Fox, E.A.: Lexical relations : enhancing effectiveness of information retrieval systems (1980) 0.02
    0.01617852 = product of:
      0.07280334 = sum of:
        0.057450015 = weight(_text_:retrieval in 5310) [ClassicSimilarity], result of:
          0.057450015 = score(doc=5310,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.5347345 = fieldWeight in 5310, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.125 = fieldNorm(doc=5310)
        0.015353328 = weight(_text_:of in 5310) [ClassicSimilarity], result of:
          0.015353328 = score(doc=5310,freq=2.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.27643585 = fieldWeight in 5310, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.125 = fieldNorm(doc=5310)
      0.22222222 = coord(2/9)
    
  17. Hoerman, H.L.; Furniss, K.A.: Turning practice into principles : a comparison of the IFLA Principles underlying Subject Heading Languages (SHLs) and the principles underlying the Library of Congress Subject Headings system (2000) 0.02
    0.015846655 = product of:
      0.04753996 = sum of:
        0.021543756 = weight(_text_:retrieval in 5611) [ClassicSimilarity], result of:
          0.021543756 = score(doc=5611,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.20052543 = fieldWeight in 5611, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=5611)
        0.016284661 = weight(_text_:of in 5611) [ClassicSimilarity], result of:
          0.016284661 = score(doc=5611,freq=16.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.2932045 = fieldWeight in 5611, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=5611)
        0.009711544 = product of:
          0.029134631 = sum of:
            0.029134631 = weight(_text_:29 in 5611) [ClassicSimilarity], result of:
              0.029134631 = score(doc=5611,freq=2.0), product of:
                0.12493842 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.035517205 = queryNorm
                0.23319192 = fieldWeight in 5611, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5611)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    The IFLA Section on Classification and Indexing's Working Group on Principles Underlying Subject Headings Languages has identified a set of eleven principles for subject heading languages and excerpted the texts that match each principle from the instructions for each of eleven national subject indexing systems, including excerpts from the LC's Subject Cataloging Manual: Subject Headings. This study compares the IFLA principles with other texts that express the principles underlying LCSH, especially Library of Congress Subject Headings: Principles of Structure and Policies for Application, prepared by Lois Mai Chan for the Library of Congress in 1990, Chan's later book on LCSH, and earlier documents by Haykin and Cutter. The principles are further elaborated for clarity and discussed
    Series
    Cataloging and classification quarterly; vol.29, nos.1/2
    Source
    The LCSH century: one hundred years with the Library of Congress Subject Headings system. Ed.: A.T. Stone
    Theme
    Verbale Doksprachen im Online-Retrieval
  18. Boteram, F.: Semantische Relationen in Dokumentationssprachen : vom Thesaurus zum semantischen Netz (2010) 0.02
    0.015611351 = product of:
      0.07025108 = sum of:
        0.02513438 = weight(_text_:retrieval in 4792) [ClassicSimilarity], result of:
          0.02513438 = score(doc=4792,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.23394634 = fieldWeight in 4792, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4792)
        0.045116693 = product of:
          0.06767504 = sum of:
            0.0339904 = weight(_text_:29 in 4792) [ClassicSimilarity], result of:
              0.0339904 = score(doc=4792,freq=2.0), product of:
                0.12493842 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.035517205 = queryNorm
                0.27205724 = fieldWeight in 4792, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4792)
            0.033684637 = weight(_text_:22 in 4792) [ClassicSimilarity], result of:
              0.033684637 = score(doc=4792,freq=2.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.2708308 = fieldWeight in 4792, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4792)
          0.6666667 = coord(2/3)
      0.22222222 = coord(2/9)
    
    Abstract
    Moderne Verfahren des Information Retrieval verlangen nach aussagekräftigen und detailliert relationierten Dokumentationssprachen. Der selektive Transfer einzelner Modellierungsstrategien aus dem Bereich semantischer Technologien für die Gestaltung und Relationierung bestehender Dokumentationssprachen wird diskutiert. In Form einer Taxonomie wird ein hierarchisch strukturiertes Relationeninventar definiert, welches sowohl hinreichend allgemeine als auch zahlreiche spezifische Relationstypen enthält, die eine detaillierte und damit aussagekräftige Relationierung des Vokabulars ermöglichen. Das bringt einen Zugewinn an Übersichtlichkeit und Funktionalität. Im Gegensatz zu anderen Ansätzen und Überlegungen zur Schaffung von Relationeninventaren entwickelt der vorgestellte Vorschlag das Relationeninventar aus der Begriffsmenge eines bestehenden Gegenstandsbereichs heraus.
    Date
    2. 3.2013 12:29:05
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  19. ALA / Subcommittee on Subject Relationships/Reference Structures: Final Report to the ALCTS/CCS Subject Analysis Committee (1997) 0.02
    0.01546787 = product of:
      0.04640361 = sum of:
        0.01777269 = weight(_text_:retrieval in 1800) [ClassicSimilarity], result of:
          0.01777269 = score(doc=1800,freq=4.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.16542503 = fieldWeight in 1800, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1800)
        0.012877968 = weight(_text_:use in 1800) [ClassicSimilarity], result of:
          0.012877968 = score(doc=1800,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.11841066 = fieldWeight in 1800, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1800)
        0.01575295 = weight(_text_:of in 1800) [ClassicSimilarity], result of:
          0.01575295 = score(doc=1800,freq=44.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.28363106 = fieldWeight in 1800, product of:
              6.6332498 = tf(freq=44.0), with freq of:
                44.0 = termFreq=44.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1800)
      0.33333334 = coord(3/9)
    
    Abstract
    The SAC Subcommittee on Subject Relationships/Reference Structures was authorized at the 1995 Midwinter Meeting and appointed shortly before Annual Conference. Its creation was one result of a discussion of how (and why) to promote the display and use of broader-term subject heading references, and its charge reads as follows: To investigate: (1) the kinds of relationships that exist between subjects, the display of which are likely to be useful to catalog users; (2) how these relationships are or could be recorded in authorities and classification formats; (3) options for how these relationships should be presented to users of online and print catalogs, indexes, lists, etc. By the summer 1996 Annual Conference, make some recommendations to SAC about how to disseminate the information and/or implement changes. At that time assess the need for additional time to investigate these issues. The Subcommittee's work on each of the imperatives in the charge was summarized in a report issued at the 1996 Annual Conference (Appendix A). Highlights of this work included the development of a taxonomy of 165 subject relationships; a demonstration that, using existing MARC coding, catalog systems could be programmed to generate references they do not currently support; and an examination of reference displays in several CD-ROM database products. Since that time, work has continued on identifying term relationships and display options; on tracking research, discussion, and implementation of subject relationships in information systems; and on compiling a list of further research needs.
    Content
    Enthält: Appendix A: Subcommittee on Subject Relationships/Reference Structures - REPORT TO THE ALCTS/CCS SUBJECT ANALYSIS COMMITTEE - July 1996 Appendix B (part 1): Taxonomy of Subject Relationships. Compiled by Dee Michel with the assistance of Pat Kuhr - June 1996 draft (alphabetical display) (Separat in: http://web2.ala.org/ala/alctscontent/CCS/committees/subjectanalysis/subjectrelations/msrscu2.pdf) Appendix B (part 2): Taxonomy of Subject Relationships. Compiled by Dee Michel with the assistance of Pat Kuhr - June 1996 draft (hierarchical display) Appendix C: Checklist of Candidate Subject Relationships for Information Retrieval. Compiled by Dee Michel, Pat Kuhr, and Jane Greenberg; edited by Greg Wool - June 1997 Appendix D: Review of Reference Displays in Selected CD-ROM Abstracts and Indexes by Harriette Hemmasi and Steven Riel Appendix E: Analysis of Relationships in Six LC Subject Authority Records by Harriette Hemmasi and Gary Strawn Appendix F: Report of a Preliminary Survey of Subject Referencing in OPACs by Gregory Wool Appendix G: LC Subject Referencing in OPACs--Why Bother? by Gregory Wool Appendix H: Research Needs on Subject Relationships and Reference Structures in Information Access compiled by Jane Greenberg and Steven Riel with contributions from Dee Michel and others edited by Gregory Wool Appendix I: Bibliography on Subject Relationships compiled mostly by Dee Michel with additional contributions from Jane Greenberg, Steven Riel, and Gregory Wool
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  20. Khoo, S.G.; Na, J.-C.: Semantic relations in information science (2006) 0.02
    0.015410951 = product of:
      0.046232853 = sum of:
        0.01865744 = weight(_text_:retrieval in 1978) [ClassicSimilarity], result of:
          0.01865744 = score(doc=1978,freq=6.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.17366013 = fieldWeight in 1978, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1978)
        0.011038259 = weight(_text_:use in 1978) [ClassicSimilarity], result of:
          0.011038259 = score(doc=1978,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.101494856 = fieldWeight in 1978, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1978)
        0.016537154 = weight(_text_:of in 1978) [ClassicSimilarity], result of:
          0.016537154 = score(doc=1978,freq=66.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.2977506 = fieldWeight in 1978, product of:
              8.124039 = tf(freq=66.0), with freq of:
                66.0 = termFreq=66.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1978)
      0.33333334 = coord(3/9)
    
    Abstract
    This chapter examines the nature of semantic relations and their main applications in information science. The nature and types of semantic relations are discussed from the perspectives of linguistics and psychology. An overview of the semantic relations used in knowledge structures such as thesauri and ontologies is provided, as well as the main techniques used in the automatic extraction of semantic relations from text. The chapter then reviews the use of semantic relations in information extraction, information retrieval, question-answering, and automatic text summarization applications. Concepts and relations are the foundation of knowledge and thought. When we look at the world, we perceive not a mass of colors but objects to which we automatically assign category labels. Our perceptual system automatically segments the world into concepts and categories. Concepts are the building blocks of knowledge; relations act as the cement that links concepts into knowledge structures. We spend much of our lives identifying regular associations and relations between objects, events, and processes so that the world has an understandable structure and predictability. Our lives and work depend on the accuracy and richness of this knowledge structure and its web of relations. Relations are needed for reasoning and inferencing. Chaffin and Herrmann (1988b, p. 290) noted that "relations between ideas have long been viewed as basic to thought, language, comprehension, and memory." Aristotle's Metaphysics (Aristotle, 1961; McKeon, expounded on several types of relations. The majority of the 30 entries in a section of the Metaphysics known today as the Philosophical Lexicon referred to relations and attributes, including cause, part-whole, same and opposite, quality (i.e., attribute) and kind-of, and defined different types of each relation. Hume (1955) pointed out that there is a connection between successive ideas in our minds, even in our dreams, and that the introduction of an idea in our mind automatically recalls an associated idea. He argued that all the objects of human reasoning are divided into relations of ideas and matters of fact and that factual reasoning is founded on the cause-effect relation. His Treatise of Human Nature identified seven kinds of relations: resemblance, identity, relations of time and place, proportion in quantity or number, degrees in quality, contrariety, and causation. Mill (1974, pp. 989-1004) discoursed on several types of relations, claiming that all things are either feelings, substances, or attributes, and that attributes can be a quality (which belongs to one object) or a relation to other objects.
    Linguists in the structuralist tradition (e.g., Lyons, 1977; Saussure, 1959) have asserted that concepts cannot be defined on their own but only in relation to other concepts. Semantic relations appear to reflect a logical structure in the fundamental nature of thought (Caplan & Herrmann, 1993). Green, Bean, and Myaeng (2002) noted that semantic relations play a critical role in how we represent knowledge psychologically, linguistically, and computationally, and that many systems of knowledge representation start with a basic distinction between entities and relations. Green (2001, p. 3) said that "relationships are involved as we combine simple entities to form more complex entities, as we compare entities, as we group entities, as one entity performs a process on another entity, and so forth. Indeed, many things that we might initially regard as basic and elemental are revealed upon further examination to involve internal structure, or in other words, internal relationships." Concepts and relations are often expressed in language and text. Language is used not just for communicating concepts and relations, but also for representing, storing, and reasoning with concepts and relations. We shall examine the nature of semantic relations from a linguistic and psychological perspective, with an emphasis on relations expressed in text. The usefulness of semantic relations in information science, especially in ontology construction, information extraction, information retrieval, question-answering, and text summarization is discussed. Research and development in information science have focused on concepts and terms, but the focus will increasingly shift to the identification, processing, and management of relations to achieve greater effectiveness and refinement in information science techniques. Previous chapters in ARIST on natural language processing (Chowdhury, 2003), text mining (Trybula, 1999), information retrieval and the philosophy of language (Blair, 2003), and query expansion (Efthimiadis, 1996) provide a background for this discussion, as semantic relations are an important part of these applications.
    Source
    Annual review of information science and technology. 40(2006), S.157-228

Languages

  • e 85
  • d 7
  • f 3
  • ja 1
  • nl 1
  • More… Less…

Types

  • a 80
  • m 9
  • s 7
  • el 4
  • r 3
  • x 2
  • d 1
  • More… Less…